Publications by authors named "Woodrow L Shew"

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission.

View Article and Find Full Text PDF

As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best for decoding.

View Article and Find Full Text PDF

Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived.

View Article and Find Full Text PDF

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. Here we offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality - a dynamical regime with moderate correlations and multi-scale information capacity and transmission.

View Article and Find Full Text PDF

Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation.

View Article and Find Full Text PDF

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear.

View Article and Find Full Text PDF

The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.

View Article and Find Full Text PDF

The spiking variability of neural networks has important implications for how information is encoded to higher brain regions. It has been well documented by numerous labs in many cortical and motor regions that spiking variability decreases with stimulus onset, yet whether this principle holds in the OB has not been tested. In stark contrast to this common view, we demonstrate that the onset of sensory input can cause an increase in the variability of neural activity in the mammalian OB.

View Article and Find Full Text PDF

Neuronal avalanches are scale-invariant neuronal population activity patterns in the cortex that emerge in the awake state and during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that single neurons would participate in avalanche patterns selectively.

View Article and Find Full Text PDF

According to many experimental observations, neurons in cerebral cortex tend to operate in an asynchronous regime, firing independently of each other. In contrast, many other experimental observations reveal cortical population firing dynamics that are relatively coordinated and occasionally synchronous. These discrepant observations have naturally led to competing hypotheses.

View Article and Find Full Text PDF

Various functions of a network of excitable units can be enhanced if the network is in the "critical regime," where excitations are, on average, neither damped nor amplified. An important question is how can such networks self-organize to operate in the critical regime. Previously, it was shown that regulation via resource transport on a secondary network can robustly maintain the primary network dynamics in a balanced state where activity doesn't grow or decay.

View Article and Find Full Text PDF

Acetylcholine (ACh) plays an essential role in cortical information processing. Cholinergic changes in cortical state can fundamentally change how the neurons encode sensory input and motor output. Traditionally, ACh distribution in cortex and associated changes in cortical state have been assumed to be spatially diffuse.

View Article and Find Full Text PDF

Understanding nervous system function requires careful study of transient (non-equilibrium) neural response to rapidly changing, noisy input from the outside world. Such neural response results from dynamic interactions among multiple, heterogeneous brain regions. Realistic modeling of these large networks requires enormous computational resources, especially when high-dimensional parameter spaces are considered.

View Article and Find Full Text PDF

Cortical neurons can be strongly or weakly coupled to the network in which they are embedded, firing in sync with the majority or firing independently. Both these scenarios have potential computational advantages in motor cortex. Commands to the body might be more robustly conveyed by a strongly coupled population, whereas a motor code with greater information capacity could be implemented by neurons that fire more independently.

View Article and Find Full Text PDF

Similar universal phenomena can emerge in different complex systems when those systems share a common symmetry in their governing laws. In physical systems operating near a critical phase transition, the governing physical laws obey a fractal symmetry; they are the same whether considered at fine or coarse scales. This scale-change symmetry is responsible for universal critical phenomena found across diverse systems.

View Article and Find Full Text PDF

It is widely appreciated that balanced excitation and inhibition are necessary for proper function in neural networks. However, in principle, balance could be achieved by many possible configurations of excitatory and inhibitory synaptic strengths and relative numbers of excitatory and inhibitory neurons. For instance, a given level of excitation could be balanced by either numerous inhibitory neurons with weak synapses or a few inhibitory neurons with strong synapses.

View Article and Find Full Text PDF

Determining how synaptic coupling within and between regions is modulated during sensory processing is an important topic in neuroscience. Electrophysiological recordings provide detailed information about neural spiking but have traditionally been confined to a particular region or layer of cortex. Here we develop new theoretical methods to study interactions between and within two brain regions, based on experimental measurements of spiking activity simultaneously recorded from the two regions.

View Article and Find Full Text PDF

Fundamental to the function of nervous systems is the ability to reorganize to cope with changing sensory input. Although well-studied in single neurons, how such adaptive versatility manifests in the collective population dynamics and function of cerebral cortex remains unknown. Here we measured population neural activity with microelectrode arrays in turtle visual cortex while visually stimulating the retina.

View Article and Find Full Text PDF

The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood.

View Article and Find Full Text PDF

Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered.

View Article and Find Full Text PDF

Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators).

View Article and Find Full Text PDF

Modulation of interactions among neurons can manifest as dramatic changes in the state of population dynamics in cerebral cortex. How such transitions in cortical state impact the information processing performed by cortical circuits is not clear. Here we performed experiments and computational modeling to determine how somatosensory dynamic range depends on cortical state.

View Article and Find Full Text PDF

The analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task.

View Article and Find Full Text PDF