Publications by authors named "Woocheol Sim"

Aim: The aim of the study was to investigate the influence of cavity cleaning and conditioning on marginal integrity of directly placed post-endodontic composite class-I-restorations in vitro.

Methodology: A total of 168 fully intact teeth without caries or fillings received pre-endodontic composite restorations (class-II) after their extraction. Occlusal endodontic access-cavities were prepared, and root canals were instrumented and filled with gutta-percha and an epoxy resin-based sealer.

View Article and Find Full Text PDF

Objective: Supplementation with serine attenuates alcoholic fatty liver by regulating homocysteine metabolism and lipogenesis. However, little is known about serine metabolism in fatty liver disease (FLD). We aimed to investigate the changes in serine biosynthetic pathways in humans and animal models of fatty liver and their contribution to the development of FLD.

View Article and Find Full Text PDF

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, and the function is linked to cellular metabolism including mitochondrial biogenesis. Hepatic L-serine concentration is decreased significantly in fatty liver disease. We reported that the supplementation of the amino acid ameliorated the alcoholic fatty liver by enhancing L-serine-dependent homocysteine metabolism.

View Article and Find Full Text PDF

Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.

View Article and Find Full Text PDF

Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRα activation and explored whether these derivatives could attenuate steatosis in mice.

View Article and Find Full Text PDF

Background: Hyperhomocysteinemia plays an important role in the development of hepatic steatosis, and studies indicate that homocysteine-lowering treatment inhibits the development of fatty liver.

Objective: We evaluated the effects of L-serine on alcoholic fatty liver and homocysteine metabolism.

Methods: In a binge ethanol study, male C57BL/6 mice were divided into 4 groups: control, ethanol + vehicle, and ethanol + 20 or 200 mg/kg L-serine.

View Article and Find Full Text PDF

Collaborative regulation of liver X receptor (LXR) and sterol regulatory element binding protein (SREBP)-1 are main determinants in hepatic steatosis, as shown in both animal models and human patients. Recent studies indicate that selective intervention of overly functional LXRα in the liver shows promise in treatment of fatty liver disease. In the present study, we evaluated the effects of meso-dihydroguaiaretic acid (MDGA) on LXRα activation and its ability to attenuate fatty liver in mice.

View Article and Find Full Text PDF

Pregnane X receptor (PXR) is a nuclear receptor that plays a key regulatory role in xenobiotic metabolism in a ligand-dependent manner. Recently, ethanol was reported to be either an inducer or inhibitor of Cytochrome P450 (CYP) 3A expression. According to our recent microarray data, chronic ethanol upregulates the expression of the genes associated with oxidative phase I drug metabolism, phase II conjugation reaction and phase III xenobiotic transport, most of which are known to be regulated by PXR.

View Article and Find Full Text PDF

The use of herbal medicines in disease prevention and treatment is growing rapidly worldwide, without careful consideration of safety issues. α-Terpineol is a monoterpene alcoholic component of Melaleuca alternifolia, Salvia officinalis and Carthamus tinctorius that is used widely as a flavor and essential oil in food. The present study showed that α-terpineol induces fatty liver via the AMP-activated protein kinase (AMPK)-mTOR-sterol regulatory element-binding protein-1 (SREBP-1) pathway.

View Article and Find Full Text PDF