Unlabelled: The basal ganglia (BG) in the brain exhibit diverse functions for motor, cognition, and emotion. Such BG functions could be made via competitive harmony between the two competing pathways, direct pathway (DP) (facilitating movement) and indirect pathway (IP) (suppressing movement). As a result of break-up of harmony between DP and IP, there appear pathological states with disorder for movement, cognition, and psychiatry.
View Article and Find Full Text PDFThe basal ganglia (BG) show a variety of functions for motor and cognition. There are two competitive pathways in the BG; direct pathway (DP) which facilitates movement and indirect pathway (IP) which suppresses movement. It is well known that diverse functions of the BG may be made through "balance" between DP and IP.
View Article and Find Full Text PDFUnlabelled: We are concerned about sparsely synchronized rhythms (SSRs), associated with diverse cognitive functions, in the hippocampal dentate gyrus. Distinctly, adult-born immature GCs (imGCs) emerge through neurogenesis, in addition to the mature granule cells (mGCs) (emerged in the developmental stage). In prior work, these mGCs and imGCs were found to exhibit their distinct roles in pattern separation and integration for encoding cortical inputs, respectively.
View Article and Find Full Text PDFYoung immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate gyrus (DG). In comparison to mature GCs (mGCs) (born during development), the imGCs exhibit two competing distinct properties such as high excitability (increasing activation degree) and low excitatory innervation (reducing activation degree). We develop a spiking neural network for the DG, incorporating both the mGCs and the imGCs.
View Article and Find Full Text PDFWe study the disynaptic effect of the hilar cells on pattern separation in a spiking neural network of the hippocampal dentate gyrus (DG). The principal granule cells (GCs) in the DG perform pattern separation, transforming similar input patterns into less-similar output patterns. In our DG network, the hilus consists of excitatory mossy cells (MCs) and inhibitory HIPP (hilar perforant path-associated) cells.
View Article and Find Full Text PDFWe investigate population and individual firing behaviors in sparsely synchronized rhythms (SSRs) in a spiking neural network of the hippocampal dentate gyrus (DG). The main encoding granule cells (GCs) are grouped into lamellar clusters. In each GC cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs, and they form the E-I loop.
View Article and Find Full Text PDFWe consider a biological network of the hippocampal dentate gyrus (DG). Computational models suggest that the DG would be a preprocessor for pattern separation (i.e.
View Article and Find Full Text PDFWe consider the Pavlovian eyeblink conditioning (EBC) via repeated presentation of paired conditioned stimulus (tone) and unconditioned stimulus (US; airpuff). In an effective cerebellar ring network, we change the connection probability from Golgi to granule (GR) cells, and make a dynamical classification of various firing patterns of the GR cells. Individual GR cells are thus found to show various well- and ill-matched firing patterns relative to the US timing signal.
View Article and Find Full Text PDFWe consider a cerebellar ring network for the optokinetic response (OKR), and investigate the effect of diverse recoding of granule (GR) cells on OKR by varying the connection probability p from Golgi to GR cells. For an optimal value of p(=0.06), individual GR cells exhibit diverse spiking patterns which are in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity.
View Article and Find Full Text PDFWe consider a two-population network consisting of both inhibitory (I) interneurons and excitatory (E) pyramidal cells. This I-E neuronal network has adaptive dynamic I to E and E to I interpopulation synaptic strengths, governed by interpopulation spike-timing-dependent plasticity (STDP). In previous works without STDPs, fast sparsely synchronized rhythms, related to diverse cognitive functions, were found to appear in a range of noise intensity for static synaptic strengths.
View Article and Find Full Text PDFCogn Neurodyn
February 2020
We consider a scale-free network of inhibitory Hindmarsh-Rose (HR) bursting neurons, and make a computational study on coupling-induced cluster burst synchronization by varying the average coupling strength . For sufficiently small , non-cluster desynchronized states exist. However, when passing a critical point , the whole population is segregated into 3 clusters via a constructive role of synaptic inhibition to stimulate dynamical clustering between individual burstings, and thus 3-cluster desynchronized states appear.
View Article and Find Full Text PDFWe are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabási-Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh-Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths.
View Article and Find Full Text PDFWe consider the Watts-Strogatz small-world network (SWN) consisting of inhibitory fast spiking Izhikevich interneurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without iSTDP, fast sparsely synchronized rhythms, associated with diverse cognitive functions, were found to appear in a range of large noise intensities for fixed strong synaptic inhibition strengths.
View Article and Find Full Text PDFWe consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP).
View Article and Find Full Text PDFWe consider the Watts-Strogatz small-world network (SWN) consisting of subthreshold neurons which exhibit noise-induced spikings. This neuronal network has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). In previous works without STDP, stochastic spike synchronization (SSS) between noise-induced spikings of subthreshold neurons was found to occur in a range of intermediate noise intensities.
View Article and Find Full Text PDFFor studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons.
View Article and Find Full Text PDFWe consider an inhomogeneous small-world network (SWN) composed of inhibitory short-range (SR) and long-range (LR) interneurons, and investigate the effect of network architecture on emergence of synchronized brain rhythms by varying the fraction of LR interneurons p. The betweenness centralities of the LR and SR interneurons (characterizing the potentiality in controlling communication between other interneurons) are distinctly different. Hence, in view of the betweenness, SWNs we consider are inhomogeneous, unlike the "canonical" Watts-Strogatz SWN with nearly the same betweenness centralities.
View Article and Find Full Text PDFWe investigate the effect of network architecture on burst and spike synchronization in a directed scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The α-process corresponds to a directed version of the Barabási-Albert SFN model with growth and preferential attachment, while for the β-process only preferential attachments between pre-existing nodes are made without addition of new nodes. We first consider the "pure" α-process of symmetric preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment degree.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2016
We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength J(inter) and the average number of intermodular links per interneuron M(syn)(inter). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2015
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D.
View Article and Find Full Text PDFWe are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) [Formula: see text], which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on [Formula: see text], was introduced in our recent work to characterize the spike synchronization transition.
View Article and Find Full Text PDFWe are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh-Rose neurons.
View Article and Find Full Text PDFJ Neurosci Methods
April 2014
Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems.
View Article and Find Full Text PDFWe consider an excitatory population of subthreshold Izhikevich neurons which exhibit noise-induced firings. By varying the coupling strength J, we investigate population synchronization between the noise-induced firings which may be used for efficient cognitive processing such as sensory perception, multisensory binding, selective attention, and memory formation. As J is increased, rich types of population synchronization (e.
View Article and Find Full Text PDF