We propose and demonstrate an angularly offset multiline (AOML) dispersive silicon nitride optical phased array (OPA) that enables efficient line beam scanning with an expanded field of view (FOV) and plateau envelope. The suggested AOML OPA incorporates multiline OPA units, which were seamlessly integrated with a 45° angular offset through a thermo-optic switch based on a multimode interference coupler, resulting in a wide FOV that combines three consecutive scanning ranges. Simultaneously, a periodic diffraction envelope rendered by the multiline OPA units contributes to reduced peak intensity fluctuation of the main lobe across the large FOV.
View Article and Find Full Text PDFThe conventional nanoscale anti-counterfeiting scheme, exhibiting limited encoding capacity, faces growing challenges of being falsified with the advent of advanced high-resolution equipment. In this study, we propose a multilevel anti-counterfeiting device based on a femtosecond laser (fs-laser) treated plasmonic gold nanocluster/graphene (AuNC/Gr) hybrid structure integrated with a resonant cavity. The covert structural features encoded in random colored patterns, optical reflection spectra, and Raman spectra constitute three classes of anti-counterfeiting signatures, which originate from the AuNC-covered Gr, which initiates plasmonic and thermal couplings.
View Article and Find Full Text PDFWe propose and design a flat optical phased array (OPA) receiver that consists of a grating antenna, a free-propagation region (FPR) incorporating an on-chip metalens concentrator (OCMC), and an output port of a tapered waveguide. By concatenating the OCMC-integrated FPR with the antenna, the proposed OPA allows light coupled at a slanted ψ angle to be conveyed to the output, thereby resolving the challenges of phase-controlled light detection. To impose a space-dependent phase on the incident light from the antenna, the OCMC is constructed by laterally arranging subwavelength slot meta-atoms with varying slot lengths, which are created in the core layer of a slab and uniformly quantized at 16 phase levels.
View Article and Find Full Text PDFA flat telescope (FTS), which incorporates an all-dielectric metasurface doublet (MD) based on hydrogenated amorphous silicon nanoposts, is proposed and demonstrated to achieve flexibly magnified angular beam steering that is sensitive to both light polarization and deflection direction. Specifically, for transverse-electric-polarized incident beams, the MD exhibits deflection magnification factors of +5 and +2, while for transverse magnetic polarization, the beam is steered in reverse to yield magnification factors of -5 and -2 in the horizontal and vertical directions, respectively. The proposed MD comprises cascaded metalenses, which can invoke polarization-selective transmission phases.
View Article and Find Full Text PDFA light-driven diffraction grating incorporating two grating patterns with different pitches atop a photothermal actuator (PTA) has been proposed. It is based on graphene oxide/reduced graphene oxide (GO/rGO) induced via femtosecond laser direct writing (FsLDW). The rGO, its controllable linewidth, and transmission support the formation of grating patterns; its noticeably small coefficient of thermal expansion (CTE), good flexibility, and thermal conductivity enable the fabrication of a PTA consisting of a polydimethylsiloxane layer with a relatively large CTE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlO gate dielectric layer by magnesium (Mg) doping.
View Article and Find Full Text PDFAmorphous metal-oxide semiconductors (AOSs) such as indium-gallium-zinc-oxide (IGZO) as an active channel have attracted substantial interests with regard to high-performance thin-film transistors (TFTs). Recently, intensive and extensive studies of flexible and/or wearable AOS-based TFTs fabricated by solution-process have been reported for emerging approaches based on device configuration and fabrication process. However, several challenges pertaining to practical and effective solution-process technologies remain to be resolved before low-power consuming AOS-based TFTs for wearable electronics can be realized.
View Article and Find Full Text PDFA highly sensitive electro-optic (EO) probe has been proposed and realized by tethering an ultra-high-quality ()-factor etalon to a single-mode fiber operating at around a 1550-nm wavelength. For the adopted EO etalon, the electric-field-induced refractive index modification is deemed to shift its own spectral response. An electrical modulation signal is anticipated to be produced when a probe light beam with a fixed bias wavelength impinges upon the EO etalon.
View Article and Find Full Text PDFThe combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low-computation-power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short-term memory/long-term memory, spike-timing-dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs.
View Article and Find Full Text PDFEmulation of diverse electronic devices on textile platform is considered as a promising approach for implementing wearable smart electronics. Of particular, the development of multifunctional polymeric fibers and their integration in common fabrics have been extensively researched for human friendly wearable platforms. Here we report a successful emulation of multifunctional body-motion sensors and user-interface (UI) devices in textile platform by using in situ polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)-coated fibers.
View Article and Find Full Text PDFWe report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption () wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored.
View Article and Find Full Text PDFThe success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties.
View Article and Find Full Text PDF