Age estimation is important in forensics, and numerous techniques have been investigated to estimate age based on various parts of the body. Among them, dental tissue is considered reliable for estimating age as it is less influenced by external factors. The advancement in deep learning has led to the development of automatic estimation of age using dental panoramic images.
View Article and Find Full Text PDFBackground: Posteroanterior and lateral cephalogram have been widely used for evaluating the necessity of orthognathic surgery. The purpose of this study was to develop a deep learning network to automatically predict the need for orthodontic surgery using cephalogram.
Methods: The cephalograms of 840 patients (Class ll: 244, Class lll: 447, Facial asymmetry: 149) complaining about dentofacial dysmorphosis and/or a malocclusion were included.
This paper proposes a convolutional neural network (CNN)-based deep learning model for predicting the difficulty of extracting a mandibular third molar using a panoramic radiographic image. The applied dataset includes a total of 1053 mandibular third molars from 600 preoperative panoramic radiographic images. The extraction difficulty was evaluated based on the consensus of three human observers using the Pederson difficulty score (PDS).
View Article and Find Full Text PDFObjective: The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for predicting C-shaped canals in mandibular second molars on panoramic radiographs.
Methods: Panoramic and cone beam CT (CBCT) images obtained from June 2018 to May 2020 were screened and 1020 patients were selected. Our dataset of 2040 sound mandibular second molars comprised 887 C-shaped canals and 1153 non-C-shaped canals.