Publications by authors named "WooJhon Choi"

Purpose: Longitudinally visualizing relative blood flow speeds within choroidal neovascularization (CNV) may provide valuable information regarding the evolution of CNV and the response to vascular endothelial growth factor (VEGF) inhibitors.

Design: Retrospective, longitudinal case series conducted at the New England Eye Center.

Participants: Patients with either treatment-naïve or previously treated CNV secondary to neovascular age-related macular degeneration.

View Article and Find Full Text PDF

Choriocapillary loss is a major cause of neovascular age-related macular degeneration (NV-AMD). Although vascular endothelial growth factor (VEGF) blockade for NV-AMD has shown beneficial outcomes, unmet medical needs for patients refractory or tachyphylactic to anti-VEGF therapy exist. In addition, the treatment could exacerbate choriocapillary rarefaction, necessitating advanced treatment for fundamental recovery from NV-AMD.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to assess the retinal and choroidal vasculatures of an oxygen-induced retinopathy (OIR) rat model using optical coherence tomography angiography (OCTA) as well as to verify the performance of OCTA for visualizing in vivo vascular alterations, longitudinally and quantitatively.

Methods: To induce OIR, Sprague Dawley rat pups were incubated in an 80% oxygen chamber from postnatal day 1 (P1) to P11 and returned to room air. OCTA imaging was performed in six eyes at P15, P18, P21, and P24.

View Article and Find Full Text PDF

Functional hyperemia in the rat cortex was investigated using high-speed optical coherence tomography (OCT) angiography and Doppler OCT. OCT angiography (OCTA) was performed to image the hemodynamic stimulus-response over a wide field of view. Temporal changes in vessel diameters in different vessel compartments, which were determined as the diameters of erythrocyte flows in OCT angiograms, were measured in order to monitor localized hemodynamic changes.

View Article and Find Full Text PDF

Purpose: To examine the definition, rationale, and effects of thresholding in OCT angiography (OCTA).

Design: A theoretical description of OCTA thresholding in combination with qualitative and quantitative analysis of the effects of OCTA thresholding in eyes from a retrospective case series.

Participants: Four eyes were qualitatively examined: 1 from a 27-year-old control, 1 from a 78-year-old exudative age-related macular degeneration (AMD) patient, 1 from a 58-year-old myopic patient, and 1 from a 77-year-old nonexudative AMD patient with geographic atrophy (GA).

View Article and Find Full Text PDF

The purpose of this study is to evaluate the suitability of five different anesthetic protocols (isoflurane, isoflurane–xylazine, pentobarbital, ketamine–xylazine, and ketamine–xylazine–vecuronium) for functional blood flow imaging in the rat eye. Total retinal blood flow was measured at a series of time points using an ultrahigh-speed Doppler OCT system. Additionally, each anesthetic protocol was qualitatively evaluated according to the following criteria: (1) time-stability of blood flow, (2) overall rate of blood flow, (3) ocular immobilization, and (4) simplicity.

View Article and Find Full Text PDF

Purpose: Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed.

Methods: Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol.

View Article and Find Full Text PDF

Purpose: To investigate choriocapillaris (CC) alteration in patients with nascent geographic atrophy (nGA) and/or drusen-associated geographic atrophy (DAGA) using swept-source optical coherence tomography angiography (OCTA).

Methods: A 1,050-nm wavelength, 400 kHz A-scan rate swept-source optical coherence tomography prototype was used to perform volumetric swept-source optical coherence tomography angiography over 6 mm × 6 mm fields of view in patients with nGA and/or DAGA. The resulting optical coherence tomography (OCT) and OCTA data were analyzed using a combination of en face and cross-sectional techniques.

View Article and Find Full Text PDF

Purpose: To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients.

Methods: The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the performance of optical coherence tomography angiography (OCTA) in visualizing laser-induced choroidal neovascularization (CNV) in the rodent retina.

Methods: Choroidal neovascularization was induced via laser photocoagulation in 2 male Brown Norway rats and 2 male C57BL/6 mice. For qualitative comparison, the animals were imaged in vivo with OCTA, indocyanine green angiography (ICGA), and fluorescein angiography (FA), and ex vivo with immunofluorescence confocal microscopy, 14 days post laser photocoagulation without anti-vascular endothelial growth factor (anti-VEGF) intervention.

View Article and Find Full Text PDF

Purpose: To investigate ultrahigh-speed, swept-source optical coherence tomography (SSOCT) angiography for visualizing vascular changes in eyes with nonexudative age-related macular degeneration (AMD) with geographic atrophy (GA).

Design: Observational, prospective, cross-sectional study.

Participants: A total of 63 eyes from 32 normal subjects and 12 eyes from 7 patients with nonexudative AMD with GA.

View Article and Find Full Text PDF

Purpose: To develop and demonstrate a cardiac gating method for repeatable in vivo measurement of total retinal blood flow (TRBF) in humans using en face Doppler optical coherence tomography (OCT) at commercially available imaging speeds.

Methods: A prototype swept-source OCT system operating at 100-kHz axial scan rate was developed and interfaced with a pulse oximeter. Using the plethysmogram measured from the earlobe, Doppler OCT imaging of a 1.

View Article and Find Full Text PDF

Background And Objective: To investigate the potential of ultrahigh-speed swept-source optical coherence tomography angiography (OCTA) to visualize retinal and choroidal vascular changes in patients with exudative age-related macular degeneration (AMD).

Patients And Methods: Observational, prospective cross-sectional study. An ultrahigh-speed swept-source prototype was used to perform OCTA of the retinal and choriocapillaris microvasculature in 63 eyes of 32 healthy controls and 19 eyes of 15 patients with exudative AMD.

View Article and Find Full Text PDF

Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding.

View Article and Find Full Text PDF

We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.

View Article and Find Full Text PDF

We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina.

View Article and Find Full Text PDF

We used optical coherence tomography (OCT) angiography with a high-speed swept-source OCT system to investigate retinal blood flow changes induced by visual stimulation with a reversing checkerboard pattern. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to quantify blood flow as measured with parafoveal flow index (PFI), which is proportional to the density of blood vessels and the velocity of blood flow in the parafoveal region of the macula. PFI measurements were taken in 15 second intervals during a 4 minute period consisting of 1 minute of baseline, 2 minutes with an 8 Hz reversing checkerboard pattern stimulation, and 1 minute without stimulation.

View Article and Find Full Text PDF

Despite the challenges in achieving high phase stability, Doppler swept-source/Fourier-domain optical coherence tomography (OCT) has advantages of less fringe washout and faster imaging speeds compared to spectral/Fourier-domain detection. This Letter demonstrates swept-source OCT with a vertical cavity surface-emitting laser light source at 400 kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept-source imaging is also presented.

View Article and Find Full Text PDF

Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation.

View Article and Find Full Text PDF

We present a numerical approach to extract the dispersion mismatch in ultrahigh-resolution Fourier domain optical coherence tomography (OCT) imaging of the retina. The method draws upon an analogy with a Shack-Hartmann wavefront sensor. By exploiting mathematical similarities between the expressions for aberration in optical imaging and dispersion mismatch in spectral / Fourier domain OCT, Shack-Hartmann principles can be extended from the two-dimensional paraxial wavevector space (or the x-y plane in the spatial domain) to the one-dimensional wavenumber space (or the z-axis in the spatial domain).

View Article and Find Full Text PDF

We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small.

View Article and Find Full Text PDF

Polarization sensitive optical coherence tomography (PS-OCT) is a functional imaging method that provides additional contrast using the light polarizing properties of a sample. This manuscript describes PS-OCT based on ultrahigh speed swept source / Fourier domain OCT operating at 1050 nm at 100 kHz axial scan rates using single mode fiber optics and a multiplexing approach. Unlike previously reported PS-OCT multiplexing schemes, the method uses a passive polarization delay unit and does not require active polarization modulating devices.

View Article and Find Full Text PDF