Precisely forecasting how concrete reinforced with fiber-reinforced polymers (FRP) responds under compression is essential for fine-tuning structural designs, ensuring constructions fulfill safety criteria, avoiding overdesigning, and consequently minimizing material expenses and environmental impact. Therefore, this study explores the viability of gradient boosting regression tree (GBRT), random forest (RF), artificial neural network-multilayer perceptron (ANNMLP) and artificial neural network-radial basis function (ANNRBF) in predicting the compressive behavior of fiber-reinforced polymer (FRP)-confined concrete at ultimate. The accuracy of the proposed machine learning approaches was evaluated by comparing them with several empirical models concerning three different measures, including root mean square errors (RMSE), mean absolute errors (MAE), and determination coefficient (R).
View Article and Find Full Text PDFPolymers (Basel)
March 2022
Prestressed concrete composed of steel materials is increasingly used in various social infrastructures, such as bridges (cables), nuclear containment structures, liquefied natural gas (LNG) tanks, and structural reinforcements. This study aimed to substitute the steel in bridge cables with fiber-reinforced polymers (FRPs) to prevent the damage caused by the performance degradation of corroded prestressed steel. An optimized single-anchorage system was derived by applying multiple variables, such as the surface treatment, number of insert layers, and sleeve processing companies, to improve the maximum load and bonding with the anchorage system sleeve using the carbon FRP (CFRP) cable.
View Article and Find Full Text PDFConcrete bridge structures require reinforcement, as their performance deteriorates over time. In this regard, this study evaluated the effect of additional prestressing using fiber-reinforced polymers (FRPs) and strands applied to a demolished, deteriorated bridge. In particular, specimens were prepared for a bridge subjected to non-, near-surface mounted (NSM), and external prestressing (EP) strengthening to evaluate the stiffness and safety of the structure.
View Article and Find Full Text PDFReinforced concrete (RC) structures age with time, which results in performance degradation and cracks. These performance degradations do not recover easily, but a performance higher than the existing structures can be expected through reinforcement. There are various reinforcement methods for RC structures.
View Article and Find Full Text PDFThe prestressed near-surface mounted reinforcement (NSMR) using Fiber Reinforced Polymer (FRP) was developed to improve the load bearing capacity of ageing or degraded concrete structures. The NSMR using FRP was the subject of numerous studies of which a mere portion was dedicated to the long-term behavior under fatigue loading. Accordingly, the present study intends to examine the fatigue performance of the NSMR applying the anchoring system developed by Korea Institute of Construction and Building Technology (KICT).
View Article and Find Full Text PDF