Publications by authors named "Woo-Soo Kim"

The rising threats to food security include several factors, such as population growth, low agricultural investment, and poor distribution systems. Consequently, food insecurity results from a confluence of issues, including diseases, processing limitations, and distribution deficiencies. Food insecurity usually occurs in vulnerable areas where certain technologies and traditional food safety testing are not a viable solution for foodborne disease detection.

View Article and Find Full Text PDF

A pressure monitoring structure is a very useful element for a wearable device for health monitoring and sports biomechanics. While pressure sensors have been studied extensively, battery-free functions working in wireless detection have not been studied much. Here, we report a 3D-structured origami-based architecture sensor for wireless pressure monitoring.

View Article and Find Full Text PDF

Compared with conventional von Neumann's architecture-based processors, neuromorphic systems provide energy-saving in-memory computing. We present here a 3D neuromorphic humanoid hand designed for providing an artificial unconscious response based on training. The neuromorphic humanoid hand system mimics the reflex arc for a quick response by managing complex spatiotemporal information.

View Article and Find Full Text PDF

Unlabelled: Co-development of healthcare technology with users helps produce user-friendly products, ensuring safe device usage and meeting patients' needs. For developers considering healthcare innovations, engaging user experience can reduce production time and cost while maximizing device application. The purpose of this paper is to report lessons learned from the development of a 3D printed origami ventilator prototype in response to the rise of ventilator demand due to the Coronavirus disease (COVID-19) pandemic.

View Article and Find Full Text PDF

Advanced robotics is the result of various contributions from complex fields of science and engineering and has tremendous value in human society. Sensing robots are highly desirable in practical settings such as healthcare and manufacturing sectors through sensing activities from human-robot interaction. However, there are still ongoing research and technical challenges in the development of ideal sensing robot systems.

View Article and Find Full Text PDF

Digital microfluidics (DMF) is a promising lab-on-a-chip technology which has been applied in a wide variety of fields, including chemical sensing, biological detection, and even mechanical transportation. However, the appearance and functions of current DMF have been limited within two-dimensional planar space because of the conventional fabrication methods, such as photolithography or screen printing. In this paper, we report a DMF system which utilizes the advantage of three-dimensional (3D) printing to develop the novel form factor of electrodes and conversion of channels from planar to 3D forms.

View Article and Find Full Text PDF

Digital microfluidic (DMF) sensors integrated with circuit systems have been applied to a broad range of applications including biology, medicine, and chemistry. Compared with the conventional microfluidic devices that require extra liquid as a carrier and a complex pumping system to operate, DMF is an ideal platform for ion-selective sensing as it enables the droplet operation in a discrete, accurate, and automatic way. However, it is quite rare that DMF platform is utilized for the ion-selective detection.

View Article and Find Full Text PDF

Three-dimensional (3D) microsupercapacitors (MSC) have been spotlighted, because they overcome limited areal capacitance of two-dimensional planar MSCs. Specially, 3D printing technology offers numerous advantages to generate 3D electrodes for MSCs, which includes time-saving, cost-effective manufacturing, and realization of tailorable complex electrode designs. In this paper, we report novel hierarchical 3D designs of conductive 3D electrodes for MSC by digital light processing (DLP)-based 3D printing.

View Article and Find Full Text PDF

Here, we report guided orientation of silver nanowires (AgNWs) in extruded patterns with photo-curable 3D printing technology. A printable conductive composite material composed of polymer matrix and silver nanowires shows significantly varied electrical properties depending on the cross-sectional shape of printing nozzles: flat or circular. The composite is designed to have highly conductive AgNWs and a dielectric polymer matrix like photo-curable methacrylate resin.

View Article and Find Full Text PDF

We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.

View Article and Find Full Text PDF

Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin.

View Article and Find Full Text PDF

Direct stamping of functional materials has been developed for cost-effective and process-effective manufacturing of nano/micro patterns. However, there remain several challenging issues like the perfect removal of the residual layer and realization of high aspect ratio. We have demonstrated facile fabrication of flexible strain sensors that have microscale thick interdigitated capacitors with no residual layer by a simple direct stamping with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Here, we report the creation of highly adhesive transparent and stretchable coatings via spray-deposition of solution-based silver nanowires (AgNWs). The AgNW dispersion was spray-deposited on a polydopamine-modified stretchable elastomeric substrate to prepare thin, stretchable, transparent, highly conductive films. The polydopamine layer on the elastomeric substrate created a highly hydrophilic surface, which facilitated the subsequent spraying of the AgNW solution.

View Article and Find Full Text PDF

Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method.

View Article and Find Full Text PDF

An efficient, tunable Long Period Waveguide Grating (LPWG) filter based on a new hybrid sol-gel material is demonstrated. The LPWG exhibits an attenuation of -22 dB and a high temperature sensitivity of ~3.3 nm/ degrees C.

View Article and Find Full Text PDF

Active protein micropatterns and microarrays made by selective localization are popular candidates for medical diagnostics, such as biosensors, bioMEMS, and basic protein studies. In this paper, we present a simple fabrication process of thick (approximately 20 microm) protein micropatterning using capillary force lithography with bifunctional sol-gel hybrid materials. Because bifunctional sol-gel hybrid material can have both an amine function for linking with protein and a methacryl function for photocuring, proteins such as streptavidin can be immobilized directly on thick bifunctional sol-gel hybrid micropatterns.

View Article and Find Full Text PDF

In this paper, we fabricated a fluorinated organic-inorganic hybrid mold using a nonhydrolytic sol-gel process which can produce a crack-free mold without leaving any trace of solvent. No special chemical treatment of a release layer is needed because the fluorinated hybrid mold has fluorine molecules in the backbone. The other advantages of the hybrid mold are thermal stability over 300 degrees C.

View Article and Find Full Text PDF