The multi-stage roll die forming (RDF) process is a plastic forming process that can manufacture a transmission part with a complex shape, such as a drum clutch, by using a die set with rotational rolls. However, it is difficult to satisfy dimensional accuracy because of spring-back and unfilling. The purpose of this study is to design a multi-stage RDF process for the manufacturing of a drum clutch to improve dimensional accuracy using an artificial neural network (ANN).
View Article and Find Full Text PDFCell motility is central to processes such as wound healing, immune cell surveillance, and embryonic development. Motility requires the conversion of chemical to mechanical energy. An active area of research is to create motile particles, such as microswimmers, using catalytic and enzymatic reactions.
View Article and Find Full Text PDFGas bubbles enhance contrast in ultrasound sonography and can also carry and deliver therapeutic agents. The mechanical properties of the bubble shell play a critical role in determining the physical response of gas bubbles under ultrasound insonation. Currently, few methods allow for tailoring of the mechanical properties of the stabilizing layers of gas bubbles.
View Article and Find Full Text PDFPolymersomes are robust vesicles made from amphiphilic block co-polymers. Large populations of uniform giant polymersomes with defined, entrapped species can be made by templating of double-emulsions using microfluidics. In the present study, a series of two enzymatic reactions, one inside and the other outside of the polymersome, were designed to induce rupture of polymersomes.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2015
Recent studies have shown that polymersomes templated by microfluidic double-emulsion possess several advantages such as high monodispersity and encapsulation efficiency compared with those generated based on thin-film rehydration and electroformation. Stabilizers, including bovine serum albumin (BSA) and polyvinyl alcohol (PVA), have been used to enhance the formation and stability of double emulsions that are used as templates for the generation of polymersomes. In this work, the effect of stabilizers on the mechanical response of double-emulsion-templated polymersomes using micropipette aspiration is investigated.
View Article and Find Full Text PDFPoly(ethylene glycol) (PEG)-based films, nanotubes, and nanotube arrays were successfully made using layer-by-layer (LbL) assembly ion-containing PEO derivatives on porous templates and planar substrates. PEG nanotubes are challenging to produce because PEG dissolves into solutions and solvents used during nanotube processing, but our techniques circumvent the issue. Nanotube dimensions were verified using microscopy and the average observed diameter was 155 nm.
View Article and Find Full Text PDFThe self-assembly of diblock copolymers provides a convenient route to the formation of mechanically robust films with precise and tunable periodic arrangements of two physically demixed but chemically linked polymeric materials. Chemoselective transport membranes may be realized from such films by selective partitioning of an active species into one of the polymer domains. Here, lithium ions were selectively sequestered within the poly(ethylene oxide) block of a liquid crystalline diblock copolymer to form polymer electrolyte membranes.
View Article and Find Full Text PDFThe layer-by-layer assembly technique was used to create electrically conductive films with poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and branched polyethylenimine (BPEI). Titanium dioxide (TiO(2)) and carbon black were used to prevent UV-degradation of these PEDOT-PSS thin film assemblies. Film growth and conductivity were studied, while varying composition and examining the effect of UV absorbing particles on the electrical conductivity.
View Article and Find Full Text PDF