Remote epitaxy is a promising technology that has recently attracted considerable attention, which enables the growth of thin films that copy the crystallographic characteristics of the substrate through two-dimensional material interlayers. The grown films can be exfoliated to form freestanding membranes, although it is often challenging to apply this technique if the substrate materials are prone to damage under harsh epitaxy conditions. For example, remote epitaxy of GaN thin films on graphene/GaN templates has not been achieved by a standard metal-organic chemical vapor deposition (MOCVD) method due to such damages.
View Article and Find Full Text PDFHerein, a novel combination of Mg- and Ga-co-doped ZnO (MGZO)/Li-doped graphene oxide (LGO) transparent electrode (TE)/electron-transporting layer (ETL) has been applied for the first time in Cu ZnSn(S,Se) (CZTSSe) thin-film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al-doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short-circuit current density and fill factor of the TFSCs.
View Article and Find Full Text PDFCuZnSn(S,Se) (CZTSSe) solar cells with low cost and eco-friendly characteristics are attractive as future sources of electricity generation, but low conversion efficiency remains an issue. To improve conversion efficiency, a method of inserting intermediate layers between the CZTSSe absorber film and the Mo back contact is used to suppress the formation of MoSe and decomposition of CZTSSe. Among the candidates for the intermediate layer, graphene oxide (GO) and reduced GO have excellent properties, including high-charge mobility and low processing cost.
View Article and Find Full Text PDFQuantum dot (QD)-based luminescent down-shifting (LDS) layers were deposited on CuZnSn(S,Se) (CZTSSe) solar cells via the drop-casting method. The LDS layers can easily widen the narrow absorption wavelength regions of single-junction solar cells and enable improvement of the short-circuit current. The optical properties of LDS layers deposited on glass and containing different QD contents were analyzed based on their transmittance, reflectance, and absorbance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
CuZnSn(S,Se) (CZTSSe) thin-film solar cells are showing great promise due to using earth-abundant and nontoxic materials and tuning the band gap through the amount of S and Se. Flexible high-efficiency CZTSSe solar cells are one of the outstanding research challenges because they currently require the use of thick glass substrates due to the high-temperature heat treatment process, and for this reason, few flexible CZTSSe solar cells have been reported. Furthermore, most researchers have used thin glass and metal substrates with little flexibility; the power conversion efficiency (PCE or η) values of the solar cells made with them have been slightly lower.
View Article and Find Full Text PDFThe effect of magnetic fields on the optical output power of flip-chip light-emitting diodes (LEDs) with InGaN/GaN multiple quantum wells (MQWs) was investigated. Films and circular disks comprising ferromagnetic cobalt/platinum (Co/Pt) multilayers were deposited on a p-ohmic reflector to apply magnetic fields in the direction perpendicular to the MQWs of the LEDs. At an injection current of 20 mA, the ferromagnetic Co/Pt multilayer film increased the optical output power of the LED by 20% compared to an LED without a ferromagnetic Co/Pt multilayer.
View Article and Find Full Text PDFMetal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs.
View Article and Find Full Text PDFWe introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer.
View Article and Find Full Text PDFIn this paper, we introduce very thin Indium tin oxide (ITO) layers (5, 10, and 15 nm) hybridized with a metal mesh to produce high-performance transparent conductive layers (TCLs) in near-ultraviolet light-emitting diodes (NUV LEDs). Using UV-vis-IR spectrometry, Hall measurement, and atomic force microscopy, we found that 10 nm was the optimal thickness for the very thin ITO layers in terms of outstanding transmittance and sheet resistance values as well as stable contact properties when hybridized with the metal mesh. The proposed layers showed a value of 4.
View Article and Find Full Text PDF