IEEE Trans Pattern Anal Mach Intell
October 2024
With the remarkable success of deep neural networks, there is a growing interest in research aimed at providing clear interpretations of their decision-making processes. In this paper, we introduce Attribution Equilibrium, a novel method to decompose output predictions into fine-grained attributions, balancing positive and negative relevance for clearer visualization of the evidence behind a network decision. We carefully analyze conventional approaches to decision explanation and present a different perspective on the conservation of evidence.
View Article and Find Full Text PDF