Objectives: The increasing prevalence of multidrug-resistant microorganisms (MDRO) is increasing the frequency of poor clinical outcomes, prolonging hospitalizations, and raising healthcare costs. This study evaluated the eradication efficacy of fecal microbiota transplantation (FMT) and identified microbial and functional biomarkers of MDRO decolonization.
Methods: Fecal solution obtained from healthy unrelated donors was infused in the participants' guts which had been colonized with carbapenemase-producing enterobacteriacea (CPE), vancomycin-resistant enterococci (VRE), or both CPE and VRE.
Nitric oxide (NO) is involved in several physiological processes including vasodilation, angiogenesis, immune response, and wound healing, as well as preventing ischemia/reperfusion injury in many organs such as the heart, liver, lungs, and kidneys. Recently, various NO delivery systems such as nanoparticles, nanorods, and nanofibers have been widely studied as potential therapeutic agents. In particular, NO-releasing nanofibers have been attracting much attention for various medicinal applications including regenerative medicine, wound dressings, and coatings for implantable medical devices, due to their flexible and open architectures.
View Article and Find Full Text PDF