Inserting a graft into vessels with different diameters frequently causes severe damage to the host vessels. Poor flow patency is an unresolved issue in grafts, particularly those with diameters less than 6 mm, because of vessel occlusion caused by disturbed blood flow following fast clotting. Herein, successful patency in the deployment of an ≈2 mm diameter graft into a porcine vessel is reported.
View Article and Find Full Text PDFTo make up for the shortcomings of the suture-based approach and current coupler devices including long suturing time, exhaustive training, additional mechanical setting, and narrow working windows for size and type of diverse vessel types, a new, suture-free microneedle coupler was developed in this study. The needle shape for improved anastomosis performance and the condition for antithrombotic surface immobilization were determined. In particular, the polymer materials help to maintain healthy phenotypes of main vascular cell types.
View Article and Find Full Text PDFAlthough there are various methods for tracheal reconstruction, such as a simple approximation with suturing and coverage with adjacent soft tissue or muscle, large defects >50% of the tracheal length still present a clinical challenge. Tissue engineering, a recent promising way to possibly resolve this problem, requires a long preparatory period for stem cell seeding on a scaffold and relatively invasive procedures for stem cell harvesting. As an alternative, we used a vascularized myofascial flap for tracheal reconstruction.
View Article and Find Full Text PDFWe demonstrated correlations between mechanically bent tensile-strain-induced two-dimensional MoS2 nanosheets (NSs) and their electrochemical activities toward the hydrogen evolution reaction (HER). The tensile-strain-induced MoS2 NSs showed significantly steeper polarization curves and lower Tafel slopes than the strain-free ones, which is consistent with the simple d-band model. Furthermore, the mechanical strain increased the electrochemical activities of all the NSs toward the HER except those loaded with high MoS2 mass.
View Article and Find Full Text PDFWe developed a solution-processed indium oxide (In2O3) thin-film transistor (TFT) with a boron-doped peroxo-zirconium (ZrO2:B) dielectric on silicon as well as polyimide substrate at 200 °C, using water as the solvent for the In2O3 precursor. The formation of In2O3 and ZrO2:B films were intensively studied by thermogravimetric differential thermal analysis (TG-DTA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR), high-resolution X-ray diffraction (HR-XRD), and X-ray photoelectron spectroscopy (XPS). Boron was selected as a dopant to make a denser ZrO2 film.
View Article and Find Full Text PDFHerein, we report a novel and easy strategy for fabricating solution-processed metal oxide thin-film transistors by controlling the dielectric constant of H2O through manipulation of the metal precursor solution temperature. As a result, indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated from IZO solution at 4 °C can be operated after annealing at low temperatures (∼250 °C). In contrast, IZO TFTs fabricated from IZO solutions at 25 and 60 °C must be annealed at 275 and 300 °C, respectively.
View Article and Find Full Text PDFA compartmentalized multidomain alignment state of a layer of liquid crystal display is achieved using an ultrathin, highly transparent, and ultrafast-responsive alignment layer fabricated by a simple method. The ultrathin alignment layer consists of a self-assembled oligomer layer of poly(dimethylsiloxane) (PDMS) formed by utilizing the oligomers that diffuse out from a PDMS elastomer stamp during a contact printing process.
View Article and Find Full Text PDFWe demonstrated solution-processed thin film transistors on a peroxo-zirconium oxide (ZrO(2)) dielectric with a maximum temperature of 350 °C. The formation of ZrO(2) films was investigated by TG-DTA, FT-IR, and XPS analyses at various temperatures. We synthesized a zirconium oxide solution by adding hydrogen peroxide (H(2)O(2)).
View Article and Find Full Text PDFA design for a heteroepitaxial junction by the way of one-dimensional wurzite on a two-dimensional spinel structure in a low-temperature solution process was introduced, and it's capability was confirmed by successful fabrication of a diode consisting of p-type cobalt oxide (Co(3)O(4)) nanoplate/n-type zinc oxide (ZnO) nanorods, showing reasonable electrical performance. During thermal decomposition, the 30° rotated lattice orientation of Co(3)O(4) nanoplates from the orientation of β-Co(OH)(2) nanoplates was directly observed using high-resolution transmission electron microscopy. The epitaxial relations and the surface stress-induced ZnO nanowire growth on Co(3)O(4) were well supported using the first-principles calculations.
View Article and Find Full Text PDFChem Commun (Camb)
December 2011
A two dimensionally assembled monolayer of hexagonal convexo-convex β-cobalt hydroxide nanoplates as a self-disposable sacrificial epi-template leads to a highly vertical alignment of zinc oxide nanorods array having a good electrical contact with metal or semiconductor layer on a substrate in a hydrothermal process.
View Article and Find Full Text PDF