Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme.
View Article and Find Full Text PDFMorphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1).
View Article and Find Full Text PDFThe p53 tumor suppressor regulates distinct responses to cellular stresses. Although different stresses generate different p53 dynamics, the mechanisms by which cells decode p53 dynamics to differentially regulate target genes are not well understood. Here, we determined in individual cells how canonical p53 target gene promoters vary in responsiveness to features of p53 dynamics.
View Article and Find Full Text PDFSynthetic biological circuits that can generate outputs with distinct expression dynamics are useful for a variety of biomedical and industrial applications. We present a method to control output dynamics by altering output mRNA decay rates. Using oscillatory expression of the transcription factor p53 as the circuit regulator, we use two approaches for controlling target gene transcript degradation rates based on the output gene's 3'-untranslated region (3'-UTR): introduction of copies of destabilizing AU-rich elements into the 3'-UTR or swapping in naturally occurring 3'-UTRs conferring different transcript stabilities.
View Article and Find Full Text PDFIn response to stresses, cells often halt normal cellular processes, yet stress-specific pathways must bypass such inhibition to generate effective responses. We investigated how cells redistribute global transcriptional activity in response to DNA damage. We show that an oscillatory increase of p53 levels in response to double-strand breaks drives a counter-oscillatory decrease of MYC levels.
View Article and Find Full Text PDF