The recent surge of interest in polaritons has prompted fundamental questions about the role of dark states in strong light-matter coupling phenomena. Here, we systematically vary the relative number of dark states by controlling the number of stacked CdSe nanoplatelets confined in a Fabry-Pérot cavity. We find the emission spectrum to change significantly with an increasing number of nanoplatelets, with a gradual shift of the dominant emission intensity from the lower polariton branch to a manifold of dark states.
View Article and Find Full Text PDFCoupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume.
View Article and Find Full Text PDFThe ability to efficiently absorb light in ultrathin (subwavelength) layers is essential for modern electro-optic devices, including detectors, sensors, and nonlinear modulators. Tailoring these ultrathin films' spectral, spatial, and polarimetric properties is highly desirable for many, if not all, of the above applications. Doing so, however, often requires costly lithographic techniques or exotic materials, limiting scalability.
View Article and Find Full Text PDFMost photochemistry occurs in the regime of weak light-matter coupling, in which a molecule absorbs a photon and then performs photochemistry from its excited state. In the strong coupling regime, enhanced light-matter interactions between an optical field and multiple molecules lead to collective hybrid light-matter states called polaritons. This strong coupling leads to fundamental changes in the nature of the excited states including multi-molecule delocalized excitations, modified potential energy surfaces, and dramatically altered energy levels relative to non-coupled molecules.
View Article and Find Full Text PDFAssembling plasmonic nanocrystals in regular superlattices can produce effective optical properties not found in homogeneous materials. However, the range of these metamaterial properties is limited when a single nanocrystal composition is selected for the constituent meta-atoms. Here, we show how continuously varying doping at two length scales, the atomic and nanocrystal scales, enables tuning of both the frequency and bandwidth of the collective plasmon resonance in nanocrystal-based metasurfaces, while these features are inextricably linked in single-component superlattices.
View Article and Find Full Text PDFGood's buffers can act both as nucleating and shape-directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good's buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good's buffers can provide insight into the formation of seedless AuNS.
View Article and Find Full Text PDFThe optical properties of colloidal quantum dots (QDs) are controllable through introduction of excess electrons or holes into their delocalized bands. Crucial to robust and energy-efficient electronic doping of QDs is suitable charge compensation. Compensation by surface modification and substitutional impurities are however not sufficiently controllable to enable effective doping of QDs.
View Article and Find Full Text PDFThe reversible and cooperative activation process, which includes electron transfer from surrounding redox mediators, the reversible valence change of cofactors and macroscopic functional/structural change, is one of the most important characteristics of biological enzymes, and has frequently been used in the design of homogeneous catalysts. However, there are virtually no reports on industrially important heterogeneous catalysts with these enzyme-like characteristics. Here, we report on the design and synthesis of highly active TiO photocatalysts incorporating site-specific single copper atoms (Cu/TiO) that exhibit a reversible and cooperative photoactivation process.
View Article and Find Full Text PDFPhotoelectrochemical (PEC) water splitting provides an attractive route for large-scale solar energy storage, but issues surrounding the efficiency and the stability of photoelectrode materials impose serious restrictions on its advancement. In order to relax one of the photoelectrode criteria, the band gap, a promising strategy involves complementing the conventional PEC setup with additional power sources. Here we introduce a new concept: solar water splitting combined with reverse electrodialysis (RED).
View Article and Find Full Text PDFThe effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic-water electrolysis system. This allows key determinants of overall efficiency to be identified. On the basis of this model, 26.
View Article and Find Full Text PDFThere is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur.
View Article and Find Full Text PDFBackground: Sugar plays a central role as a source of carbon metabolism and energy production and a signaling molecule in diverse growth and developmental processes and environmental adaptation in plants. It is known that sugar metabolism and allocation between different physiological functions is intimately associated with flowering transition in many plant species. The INDETERMINATE DOMAIN (IDD)-containing transcription factor IDD8 regulates flowering time by modulating sugar metabolism and transport under sugar-limiting conditions in Arabidopsis.
View Article and Find Full Text PDFBackground: Adverse environmental conditions severely influence various aspects of plant growth and developmental processes, causing worldwide reduction of crop yields. The C-repeat binding factors (CBFs) are critical transcription factors constituting the gene regulatory network that mediates the acclimation process to low temperatures. They regulate a large number of cold-responsive genes, including COLD-REGULATED (COR) genes, via the CBF-COR regulon.
View Article and Find Full Text PDFDynamic dimer formation is an elaborate means of modulating transcription factor activities in diverse cellular processes. The basic helix-loop-helix (bHLH) transcription factor LONG HYPOCOTYL IN FAR-RED 1 (HFR1), for example, plays a role in plant photomorphogenesis by forming non-DNA binding heterodimers with PHYTOCHROMEINTERACTING FACTORS (PIFs). Recent studies have shown that a small HLH protein KIDARI (KDR) negatively regulates the HFR1 activity in the process.
View Article and Find Full Text PDFEffects of transgenic expression of dual positional maize lipoxygenase-1 on the defense system were analyzed in rice. The activities of hydroperoxidelyase and antioxidative enzymes (superoxide dismutase, catalase, peroxidase) were increased and high levels of aldehydes including malondialdehyde were produced. The constitutive level of jasmonic was slightly increased and the constitutive salicylic acid level was decreased.
View Article and Find Full Text PDFTDP1 (tyrosyl-DNA phosphodiesterase 1), a member of the PLD (phospholipase D) superfamily, catalyses the hydrolysis of a phosphodiester bond between a tyrosine residue and the 3'-phosphate of DNA. We have previously identified and characterized the AtTDP gene in Arabidopsis thaliana, an orthologue of yeast and human TDP1 genes. Sequence alignment of TDP1 orthologues revealed that AtTDP has both a conserved C-terminal TDP domain and, uniquely, an N-terminal SMAD/FHA (forkhead-associated) domain.
View Article and Find Full Text PDFThe dual positional maize lipoxygenase-1 was introduced into rice and T2 transgenic plants were produced. Cellular location of maize lipoxygenase-1 in transgenic rice and effects of calcium ion on membrane association in vitro were analyzed. Localization study by confocal microscopic analysis indicated that the maize lipoxygenase-1 was localized in cytoplasm.
View Article and Find Full Text PDFSeed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase 1 (Tdp1) is a key enzyme that hydrolyzes the phosphodiester bond between tyrosine of topoisomerase and 3'-phosphate of DNA and repairs topoisomerase-mediated DNA damage during chromosome metabolism. However, functional Tdp1 has only been described in yeast and human to date. In human, mutations of the Tdp1 gene are involved in the disease spinocerebellar ataxia with axonal neuropathy.
View Article and Find Full Text PDFThe tapetum is a layer of cells covering the inner surface of pollen sac wall. It contributes to anther development by providing enzymes and materials for pollen coat biosynthesis and nutrients for pollen development. At the end of anther development, the tapetum is degenerated, and the anther is dehisced, releasing mature pollen grains.
View Article and Find Full Text PDFUridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) are enzymes catalyzing the formation of uridine 5'-monophosphate (UMP) from uridine and adenine 5'-triphosphate (ATP) and from uracil and phosphoribosyl-alpha-l-pyrophosphate (PRPP), respectively, in the pyrimidine salvage pathway. Here, we report the characterization and functional analysis of a gene AtUK/UPRT1 from Arabidopsis thaliana. Sequencing of an expressed sequence tag clone of this gene revealed that it contains a full-length open reading frame of 1461 nucleotides and encodes a protein with a molecular mass of approximately 53 kDa.
View Article and Find Full Text PDFProfilin is a small actin-binding protein that regulates cellular dynamics of the actin cytoskeleton. In Arabidopsis (Arabidopsis thaliana), five profilins were identified. The vegetative class profilins, PRF1, PRF2, and PRF3, are expressed in vegetative organs.
View Article and Find Full Text PDFGinseng (Panax ginseng C.A. Meyer) hairy root cultures, established by infecting ginseng root discs with Agrobacterium rhizogenes, were used for secondary metabolite production.
View Article and Find Full Text PDFAppl Biochem Biotechnol
July 2004
Plants have a potential to produce a large number of important metabolites such as pharmaceuticals, food additives, pigments, flavors, fragrances, and fine chemicals. Large-scale plant cell and tissue cultures for producing useful products has been considered an attractive alternative to whole plant extraction for obtaining valuable chemicals. In plant cell and tissue cultures, cell growth and metabolite production are influenced by nutritional and environmental conditions as well as physical properties of the culture system.
View Article and Find Full Text PDFAppl Biochem Biotechnol
August 2003
This study investigated the effects of flask-to-liquid volume ratio on the growth of Panax ginseng hairy root, transformed by Agrobacterium rhizogenes, in flask cultures and compared the characteristics of various bioreactors for scale-up. The flask-to-liquid volume ratio was optimum at 1.5 mL of air/mL of medium in flask cultures, and hairy root growth was not affected above the optimum ratio.
View Article and Find Full Text PDF