G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication.
View Article and Find Full Text PDFThe G-quadruplex (G4) formed in single-stranded DNAs or RNAs plays a key role in diverse biological processes and is considered as a potential antiviral target. In the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 25 putative G4-forming sequences are predicted; however, the effects of G4-binding ligands on SARS-CoV-2 replication have not been studied in the context of viral infection. In this study, we investigated whether G4-ligands suppressed SARS-CoV-2 replication and whether their antiviral activity involved stabilization of viral RNA G4s and suppression of viral gene expression.
View Article and Find Full Text PDFG-quadruplex (G4) formed by repetitive guanosine-rich sequences plays important roles in diverse cellular processes; however, its roles in viral infection are not fully understood. In this study, we investigated the genome-wide distribution of G4-forming sequences (G4 motifs) in Varicella-Zoster virus (VZV) and found that G4 motifs are enriched in the internal repeat short and the terminal repeat short regions flanking the unique short region and also in some reiteration (R) sequence regions. A high density of G4 motifs in the R2 region was found on the template strand of ORF14, which encodes glycoprotein C (gC), a virulent factor for viral growth in skin.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) has emerged as a fundamental mechanism to compartmentalize biomolecules into membraneless organelles. In this issue, Zhou et al. (2022.
View Article and Find Full Text PDFGammaherpesviruses, including Epstein-Barr virus (EBV), are important human pathogens because they are associated with various tumors. Poly(ADP-ribose) polymerase 1 (PARP1) is a multifunctional host nuclear protein responsible for poly(ADP-ribosyl)ation (PARylation) of target proteins. While PARP1 acts as a negative regulator that suppresses the lytic replication of gammaherpesviruses, viruses are often equipped with various strategies to overcome PARP1 inhibition.
View Article and Find Full Text PDFWe observe and study a special ground state of bosons with two spin states in an optical lattice: the spin-Mott insulator, a state that consists of repulsively bound pairs that is insulating for both spin and charge transport. Because of the pairing gap created by the interaction anisotropy, it can be prepared with low entropy and can serve as a starting point for adiabatic state preparation. We find that the stability of the spin-Mott state depends on the pairing energy, and observe two qualitatively different decay regimes, one of which exhibits protection by the gap.
View Article and Find Full Text PDFThe gammaherpesviruses, include the Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation.
View Article and Find Full Text PDFViral deubiquitinases (DUBs) regulate cellular innate immunity to benefit viral replication. In human cytomegalovirus (HCMV), the UL48-encoded DUB regulates innate immune responses, including NF-κB signaling. Although UL48 DUB is known to regulate its stability via auto-deubiquitination, its impact on other viral proteins is not well understood.
View Article and Find Full Text PDFMott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for low-dimensional magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV), which belongs to the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) catalyzes the polymerization of ADP-ribose units on target proteins. In KSHV-infected cells, PARP1 inhibits replication and transcription activator (RTA), a molecular switch that initiates lytic replication, through direct interaction.
View Article and Find Full Text PDFThe Chikungunya virus (CHIKV) belongs to the Alphavirus genus of Togaviridae family and contains a positive-sense single stranded RNA genome. Infection by this virus mainly causes sudden high fever, rashes, headache, and severe joint pain that can last for several months or years. CHIKV, a mosquito-borne arbovirus, is considered a re-emerging pathogen that has become one of the most pressing global health concerns due to a rapid increase in epidemics.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase 1 (PARP-1), an enzyme that modifies nuclear proteins by poly(ADP-ribosyl)ation, regulates various cellular activities and restricts the lytic replication of oncogenic gammaherpesviruses by inhibiting the function of replication and transcription activator (RTA), a key switch molecule of the viral life cycle. A viral PARP-1-interacting protein (vPIP) encoded by murine gammaherpesvirus 68 (MHV-68) facilitates lytic replication by disrupting interactions between PARP-1 and RTA. Here, the structure of MHV-68 vPIP was determined at 2.
View Article and Find Full Text PDFInfluenza A virus (IAV) infection is a global public health concern. It causes respiratory diseases ranging from mild illness to fatal disease. Natural killer (NK) cells are an innate immune component that kill infected cells and secrete cytokines to modulate the adaptive immune system; they constitute the first-line defense and play important roles in controlling IAV infection.
View Article and Find Full Text PDFDExD/H-box helicase 9 (DHX9), or RNA helicase A (RHA), is an abundant multifunctional nuclear protein. Although it was previously reported to act as a cytosolic DNA sensor in plasmacytoid dendritic cells (pDCs), the role and molecular mechanisms of action of DHX9 in cells that are not pDCs during DNA virus infection are not clear. Here, a macrophage-specific knockout and a fibroblast-specific knockdown of DHX9 impaired antiviral innate immunity against DNA viruses, leading to increased virus replication.
View Article and Find Full Text PDFCytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown.
View Article and Find Full Text PDFWe demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit.
View Article and Find Full Text PDFUnlabelled: In Kaposi's sarcoma-associated herpesvirus (KSHV), poly(ADP-ribose) polymerase 1 (PARP-1) acts as an inhibitor of lytic replication. Here, we demonstrate that KSHV downregulated PARP-1 upon reactivation. The viral processivity factor of KSHV (PF-8) interacted with PARP-1 and was sufficient to degrade PARP-1 in a proteasome-dependent manner; this effect was conserved in murine gammaherpesvirus 68.
View Article and Find Full Text PDFThe inflammasome is a molecular platform that stimulates the activation of caspase-1 and the processing of pro-interleukin (IL)-1β and pro-IL-18 for secretion. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is activated by diverse molecules and pathogens, leading to the formation of the NLRP3 inflammasome. Recent studies showed that the NLRP3 inflammasome mediates innate immunity against influenza A virus (IAV) infection.
View Article and Find Full Text PDFBackground: Standard approaches for creating a double eyelid in Asian patients may cause hematoma, asymmetry, early release of the fold, or an unsatisfactory appearance.
Objective: We report an approach to creating a double eyelid based on integration of the septoaponeurotic union into the dermis of the pretarsal skin.
Methods: A preoperative design was drawn with the patient in the supine and sitting positions, with the fold level always located 8 to 10 mm from the lid margin.