Publications by authors named "Wonkyeong Son"

Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies.

View Article and Find Full Text PDF

Recently, several attempts have been made to activate or functionalize macroscopic carbon nanotube (CNT) yarns to enhance their innate abilities. However, a more homogeneous and holistic activation approach that reflects the individual nanotubes constituting the yarns is crucial. Herein, a facile strategy is reported to maximize the intrinsic properties of CNTs assembled in yarns through an electrochemical inner-bundle activation (EIBA) process.

View Article and Find Full Text PDF

Hydrogen (H) gas has recently become a crucial energy source and an imperative energy vector, emerging as a powerful next-generation solution for fuel cells and biomedical, transportation, and household applications. With increasing interest in H, safety concerns regarding personal injuries from its flammability and explosion at high concentrations (>4%) have inspired the development of wearable pre-emptive gas monitoring platforms that can operate on curved and jointed parts of the human body. In this study, a yarn-type hydrogen gas sensing platform (HGSP) was developed by biscrolling of palladium oxide nanoparticles (PdO NPs) and spinnable carbon nanotube (CNT) buckypapers.

View Article and Find Full Text PDF

Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns.

View Article and Find Full Text PDF

Coil-structured carbon nanotube (CNT) yarns have recently attracted considerable attention. However, structural instability due to heavy twist insertion, and inherent hydrophobicity restrict its wider application. We report a twist-stable and hydrophilic coiled CNT yarn produced by the facile electrochemical oxidation (ECO) method.

View Article and Find Full Text PDF

Recently, three-dimensional (3D) porous foams have been studied, but further improvement in nanoscale surface area and stretchability is required for electronic and energy applications. Herein, a general strategy is reported to form a tailored wrinkling structure on strut surfaces inside a 3D polydimethylsiloxane (PDMS) polymeric foam. Controlled wrinkles are created on the struts of 3D foam through an oxygen plasma treatment to form a bilayer surface of PDMS on uniaxially prestretched 3D PDMS foam, followed by relaxation.

View Article and Find Full Text PDF

Stretchable strain sensors based on percolative arrangements of conducting nanoparticles are essential tools in stretchable electronics and have achieved outstanding performance. Introducing serpentine patterns for strain-sensing materials is a very effective method for enhancing stretchability with a quantified structural resistance through a simple, reliable, and facile approach. Here, we investigate serpentine-pattern effects in the electrical responses to biaxial stretching for percolative graphene-nanoparticle films.

View Article and Find Full Text PDF

Wearable and skin-attachable electronics with portable/wearable and stretchable smart sensors are essential for health-care monitoring devices or systems. The property of adhesion to the skin in both dry and wet environments is strongly required for efficient monitoring of various human activities. We report here a facile, low-cost, scalable fabrication method for skin-adhesive graphene-coated fabric (GCF) sensors that are sensitive and respond fast to applied pressure and strain.

View Article and Find Full Text PDF

We present a flexible strain sensor based on a graphene-yarn composite obtained by spray coating of graphene nanoplates. To improve the stretchability, graphene nanoplates were spray-coated instead of dip-coated on pre-stretched yarn. The spray-coating method yielded not only 3.

View Article and Find Full Text PDF

Finger skin electronics are essential for realizing humanoid soft robots and/or medical applications that are very similar to human appendages. A selective sensitivity to pressure and vibration that are indispensable for tactile sensing is highly desirable for mimicking sensory mechanoreceptors in skin. Additionally, for a human-machine interaction, output signals of a skin sensor should be highly correlated to human neural spike signals.

View Article and Find Full Text PDF

The human skin has inspired multimodal detection using smart devices or systems in fields including biomedical engineering, robotics, and artificial intelligence. Hairs of a high aspect ratio (AR) connected to follicles, in particular, detect subtle structural displacements by airflow or ultralight touch above the skin. Here, hairy skin electronics assembled with an array of graphene sensors (16 pixels) and artificial microhairs for multimodal detection of tactile stimuli and details of airflows (e.

View Article and Find Full Text PDF

Applications in the field of portable and wearable electronics are becoming multifunctional, and the achievement of transparent electronics extensively expands the applications into devices such as wearable flexible displays or skin-attachable mobile computers. Moreover, the self-charging power system (SCPS) is the core technique for realizing portable and wearable electronics. Here, we propose a transparent and flexible multifunctional electronic system in which both an all-in-one SCPS and a touch sensor are combined.

View Article and Find Full Text PDF

Highly deformable and electrically conductive fibres with multiple functionalities may be useful for diverse applications. Here we report on a supercoil structure (i.e.

View Article and Find Full Text PDF

In this work, we propose a stretchable graphene film sensor that can detect all of lateral and vertical strain with unique architecture in single sensor element since most approaches so far are only available for detecting either lateral or vertical strain, but not both. The sensor is fabricated with percolative networks of graphene nanoplatelet using spray-coating method for constructing strain sensing channel and electrode simultaneously. The sensor exhibits a high stretchability of 150% with a gauge factor of 8.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed an electrical sensor that mimics the human sense of touch by using a porous graphene film to encode complex surface textures.
  • The sensor analyzes electrical signals created when touching objects, allowing it to recognize tactile patterns.
  • Machine learning techniques improve the sensor’s accuracy in classifying textures, outperforming human touch in recognizing delicate fabric samples.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: