Publications by authors named "Wonjeong Lee"

Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) presents treatment challenges due to a lack of detectable surface receptors. Natural killer (NK) cell-based adaptive immunotherapy is a promising treatment because of the characteristic anticancer effects of killing malignant cells directly by secreting cytokines and lytic granules. To maximize the cancer recognition ability of NK cells, biomaterial-mediated ex vivo cell surface engineering has been developed for sufficient cell membrane immobilization of tumor-targeting ligands via hydrophobic anchoring.

View Article and Find Full Text PDF

Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering.

View Article and Find Full Text PDF

Colon cancer is a significant health concern. The development of effective drug delivery systems is critical for improving treatment outcomes. In this study, we developed a drug delivery system for colon cancer treatment by embedding 6-mercaptopurine (6-MP), an anticancer drug, in a thiolated gelatin/polyethylene glycol diacrylate hydrogel (6MP-GPGel).

View Article and Find Full Text PDF

A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments.

View Article and Find Full Text PDF

Background: The development of three-dimensional hydrogels using polymeric biomaterials is a key technology for tissue engineering and regenerative medicine. Successful tissue engineering requires the control and identification of the physicochemical properties of hydrogels.

Methods: Interpenetrating network (IPN) hydrogel was developed using thiolated gelatin (GSH) and poly(ethylene glycol) diacrylate (PEGDA), with the aid of ammonium persulfate (APS) and N,N,N,N'-tetramethylethylenediamine (TEMED) as radical initiators.

View Article and Find Full Text PDF

Rationale And Objectives: The aim of this study was to evaluate the reliability and validity of soft copy images based on flat-panel detector of digital radiography (DR-FPD soft copy images) compared to analog radiographs (ARs) in pneumoconiosis classification and diagnosis.

Materials And Methods: DR-FPD soft copy images and ARs from 349 subjects were independently read by four-experienced readers according to the International Labor Organization 2000 guidelines. DR-FPD soft copy images were used to obtain consensus reading (CR) by all readers as the gold standard.

View Article and Find Full Text PDF

Background: The purpose of this study was to evaluate the relationship of pulmonary function impairment (PFI) and coronary artery calcification (CAC) by multi-detector computed tomography (MDCT), and the effect of pneumoconiosis on CAC or PFI.

Methods: Seventy-six subjects exposed to inorganic dusts underwent coronary artery calcium scoring by MDCT, spirometry, laboratory tests, and a standardized questionnaire. CAC was quantified using a commercial software (Rapidia ver.

View Article and Find Full Text PDF

The purpose of this study was to compare digital radiography (DR) and analog radiography (AR) for the screening of pneumoconiosis with respect to radiation dose, image quality, and pneumoconiosis classification. DR was performed on 50 subjects who were enrolled for an examination of pneumoconiosis (Digital Diagnost™, Philips, Netherlands), and AR (MXO-15B, Toshiba, Japan) was performed the same day after the study was approved by the Institutional Review Board and written informed consent was obtained from all subjects. Entrance surface doses (ESDs) of DR and AR were measured using a glass dosimeter attached to a Rando human phantom (Alderson Co.

View Article and Find Full Text PDF

We developed the standard digital images (SDIs) to be used in the classification and recognition of pneumoconiosis. From July 3, 2006 through August 31, 2007, 531 retired male workers exposed to inorganic dust were examined by digital (DR) and analog radiography (AR) on the same day, after being approved by our institutional review board and obtaining informed consent from all participants. All images were twice classified according to the International Labour Office (ILO) 2000 guidelines with reference to ILO standard analog radiographs (SARs) by four chest radiologists.

View Article and Find Full Text PDF

Inhaled inorganic dusts such as coal can cause inflammation and fibrosis in the lung called pneumoconiosis. Chronic inflammatory process in the lung is associated with various cytokines and reactive oxygen species (ROS) formation. Expression of some cytokines mediates inflammation and leads to tissue damage or fibrosis.

View Article and Find Full Text PDF

The protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of multiple signaling pathways including the Wnt/beta-catenin and the ERK pathways. To understand the complex signaling networking associated with PP2A, we searched proteins interacting with the catalytic subunit of protein phosphatase 2A (PP2Ac) by a pull-down analysis followed by 2-D gel electrophoresis and proteomic analyses. The probability of identification of the proteins interacting with PP2Ac was increased by searching proteins differently interacting with PP2Ac according to stimulation of Wnt3a, which regulates both the Wnt/beta-catenin and the ERK pathways.

View Article and Find Full Text PDF

Wnt3a activates proliferation of fibroblasts cells via activation of both extracellular signal-regulated kinase (ERK) and Wnt/beta-catenin signaling pathways. In this study, we show that the phosphatidyl inositol 3 kinases (PI3K)-Akt pathway is also involved in the Wnt3a-induced proliferation. Akt was activated within 30 min by Wnt3a in NIH3T3 cells.

View Article and Find Full Text PDF