Publications by authors named "Wonjae Ko"

Enzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.

View Article and Find Full Text PDF

Oxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability.

View Article and Find Full Text PDF

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO, ZnO and CeO, containing various catalytically active transition metals, including Pt, Ir and Cu.

View Article and Find Full Text PDF

Single-atom photocatalysis has shown potential in various single-step organic transformations, but its use in multistep organic transformations in one reaction systems has rarely been achieved. Herein, we demonstrate atomic site orthogonality in the M/CN system (where M = Pd or Ni), enabling a cascade photoredox reaction involving oxidative and reductive reactions in a single system. The system utilizes visible-light-generated holes and electrons from CN, driving redox reactions (e.

View Article and Find Full Text PDF

Single-atom nanozymes (SAzymes) are considered promising alternatives to natural enzymes. The catalytic performance of SAzymes featuring homogeneous, well-defined active structures can be enhanced through elucidating structure-activity relationship and tailoring physicochemical properties. However, manipulating enzymatic properties through structural variation is an underdeveloped approach.

View Article and Find Full Text PDF

Visible-light-driven organic transformations are of great interest in synthesizing valuable fine chemicals under mild conditions. The merger of heterogeneous photocatalysts and transition metal catalysts has recently drawn much attention due to its versatility for organic transformations. However, these semi-heterogenous systems suffered several drawbacks, such as transition metal agglomeration on the heterogeneous surface, hindering further applications.

View Article and Find Full Text PDF

Exposing facet and surface strain are critical factors affecting catalytic performance but unraveling the composition-dependent activity on specific facets under strain-controlled environment is still challenging due to the synthetic difficulties. Herein, we achieved a (001) facet-defined Co-Mn spinel oxide surface with different surface compositions using epitaxial growth on CoO nanocube template. We adopted composition gradient synthesis to relieve the strain layer by layer, minimizing the surface strain effect on catalytic activity.

View Article and Find Full Text PDF

Multi-metal oxide (MMO) materials have significant potential to facilitate various demanding reactions by providing additional degrees of freedom in catalyst design. However, a fundamental understanding of the (electro)catalytic activity of MMOs is limited because of the intrinsic complexity of their multi-element nature. Additional complexities arise when MMO catalysts have crystalline structures with two different metal site occupancies, such as the spinel structure, which makes it more challenging to investigate the origin of the (electro)catalytic activity of MMOs.

View Article and Find Full Text PDF

Pd is one of the most effective catalysts for the electrochemical reduction of CO to formate, a valuable liquid product, at low overpotential. However, the intrinsically high CO affinity of Pd makes the surface vulnerable to CO poisoning, resulting in rapid catalyst deactivation during CO electroreduction. Herein, we utilize the interaction between metals and metal-organic frameworks to synthesize atomically dispersed Au on tensile-strained Pd nanoparticles showing significantly improved formate production activity, selectivity, and stability with high CO tolerance.

View Article and Find Full Text PDF

Integrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO as a model intercalation compound.

View Article and Find Full Text PDF