This study employs high-level quantum chemical calculations to determine the global minimum structure of Au10 clusters definitively. Contrary to previous reports, coupled-cluster singles and doubles with perturbative triples [CCSD(T)] calculations with sizable quadruple-ζ basis sets incorporating the spin-orbit (SO) effect reveal that the planar 10.b structure is the true global minimum for Au10, not the three-dimensional 10.
View Article and Find Full Text PDFWe performed high-level ab initio quantum chemical calculations, incorporating higher-order excitations, spin-orbit coupling (SOC), and the Gaunt interaction, to calculate the electron affinities (EAs) of alkaline earth (AE) metal atoms (Ca, Sr, Ba, and Ra), which are notably small. The coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is insufficient to accurately calculate the EAs of AE metal atoms. Higher-order excitations proved crucial, with the coupled-cluster singles, doubles, and triples with perturbative quadruples [CCSDT(2)Q] method effectively capturing dynamic electron correlation effects.
View Article and Find Full Text PDFWe re-examined the existence of planar tetracoordinate F (ptF) atoms, which was proposed recently by using high-level ab initio methods such as coupled-cluster singles and doubles with perturbative triples (CCSD(T)) with large basis sets. Our calculations indicate that the planar structures of FIn (), FTl (), FGaIn (), FInTl (), FInTl (), and FInTl () are not the minimum energy states; by contrast, they are transition states. Density functional theory calculations overestimate the size of the cavity formed by the four peripheral atoms, leading to erroneous conclusions regarding the existence of ptF atoms.
View Article and Find Full Text PDFExpanding on previous demonstrations of the therapeutic effects of adeno-associated virus (AAV) carrying small-hairpin RNA (shRNA) in downregulating the mechanistic target of rapamycin (mTOR) in in vivo retinal vascular disorders, vascular endothelial growth factor (VEGF)-stimulated endothelial cells were treated with AAV2-shmTOR to examine the role of mTOR inhibition in retinal angiogenesis. AAV2-shmTOR exposure significantly reduced mTOR expression in human umbilical vein endothelial cells (HUVECs) and decreased downstream signaling cascades of mTOR complex 1 (mTORC1) and mTORC2 under VEGF treatment. Moreover, the angiogenic potential of VEGF was significantly inhibited by AAV2-shmTOR, which preserved endothelial integrity by maintaining tight junctions between HUVECs.
View Article and Find Full Text PDFThis study was conducted to investigate the skeletal development of bullhead torrent catfish, larvae and to utilize them as basic data for the taxonomic study of larvae. Skeletal development was observed by being divided into cranium, visceral skeleton, shoulder girdle bone, pelvic girdle bone and vertebra. On the first day after hatching, the pre-larvae had an average total length of 7.
View Article and Find Full Text PDFIn this study we examined the anti-leukemia activity of a small molecule inhibitor of Hsp70 proteins, apoptozole (Az), and hybrids in which it is linked to an inhibitor of either Hsp90 (geldanamycin) or Abl kinase (imatinib). The results of NMR studies revealed that Az associates with an ATPase domain of Hsc70 and thus blocks ATP binding to the protein. Observations made in the cell study indicated that Az treatment promotes leukemia cell death by activating caspase-dependent apoptosis without affecting the caspase-independent apoptotic pathway.
View Article and Find Full Text PDF