Publications by authors named "Wonho Jhe"

Rheological characteristics exhibit significant variations at nanoscale confinement or near interfaces, compared to bulk rheological properties. To bridge the gap between nano- and bulk-scale rheology, allowing for a better and holistic understanding of rheology, developing a single experimental platform that provides rheological measurements across different scales, from nano to bulk, is desirable. Here, we present the novel methodology for multiscale rheology using a highly sensitive atomic force microscope based on a quartz tuning fork (QTF) force sensor.

View Article and Find Full Text PDF

Dry eye disease (DED) is a major ocular pathology worldwide, causing serious ocular discomfort and even visual impairment. The incidence of DED is gradually increasing with the high-frequency use of electronic products. Although inflammation is core cause of the DED vicious cycle, reactive oxygen species (ROS) play a pivotal role in the vicious cycle by regulating inflammation from upstream.

View Article and Find Full Text PDF

Purpose: Obstructive sleep apnea (OSA), a highly prevalent and potentially serious sleep disorder, requires effective screening tools. Saliva is a useful biological fluid with various metabolites that might also influence upper airway patency by affecting surface tension in the upper airway. However, little is known about the composition and role of salivary metabolites in OSA.

View Article and Find Full Text PDF

Optical precision spectroscopy of isotope shifts can be used to test for new forces beyond the standard model, and to determine basic properties of atomic nuclei. We measure isotope shifts on the highly forbidden ^{2}S_{1/2}→^{2}F_{7/2} octupole transition of trapped ^{168,170,172,174,176}Yb ions. When combined with previous measurements in Yb^{+} and very recent measurements in Yb, the data reveal a King plot nonlinearity of up to 240σ.

View Article and Find Full Text PDF

Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures. However, the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir, which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle. Here, we propose a dielectrophoresis (DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions.

View Article and Find Full Text PDF

The size and shape of skeletal muscle fibers are affected by various physiological and pathological conditions, such as muscle atrophy, hypertrophy, regeneration, and dystrophies. Hence, muscle fiber cross-sectional area (CSA) is an important determinant of muscle health and plasticity. We adapted the Imaris software to automatically segment muscle fibers based on fluorescent labeling of the plasma membrane and measure muscle fiber CSA.

View Article and Find Full Text PDF

Ionic liquids (ILs) are emerging as novel solvents that exhibit peculiar mechanical properties in the form of thin films on metal surfaces under normal pressure. However, the mechanical properties of ILs in the form of nano-meniscus have not been analyzed yet. Here, we investigate the shear viscoelasticity of a single IL meniscus at the nanoscale.

View Article and Find Full Text PDF

Motivation: Characterizing drug-protein interactions (DPIs) is crucial to the high-throughput screening for drug discovery. The deep learning-based approaches have attracted attention because they can predict DPIs without human trial and error. However, because data labeling requires significant resources, the available protein data size is relatively small, which consequently decreases model performance.

View Article and Find Full Text PDF

Surface tension is a key parameter for understanding nucleation in the very initial stage of phase transformation. Although surface tension has been predicted to vary with the curvature of the liquid-vapor interface, particularly at the large curvature of, e.g.

View Article and Find Full Text PDF

Force reconstruction in dynamic force microscopy (DFM) is a nontrivial problem that requires the deconvolution of integrals. However, conventional reconstruction methods, which recover forces from single-frequency motion of the cantilever at its resonance, exhibit non-negligible error and reconstruction instability in the highly nonlinear force regime when the tip oscillates with its amplitude comparable to the decay length of the interaction. Here, we develop a theoretical platform of DFM based on multiharmonic signal analysis for exact and robust reconstruction of conservative and dissipative forces, valid for all oscillation amplitudes and entire tip-sample distances in both amplitude- and frequency-modulation atomic force microscopy.

View Article and Find Full Text PDF

Hydration is ubiquitous in any kind of water-substance interaction such as in various interfacial and biological processes. Despite substantial progress made to date, however, still less explored is the hydration behavior on complex heterogeneous surfaces, such as the water surrounding the protein, which requires a platform that enables systematic investigation at the atomic scale. Here, we realized a heterogeneous self-assembled monolayer system that allows both controllable mixing with hydrophobic or hydrophilic groups and precise distance control of the functional carboxyl groups from the surface by methylene spacer groups.

View Article and Find Full Text PDF

Understanding the phases of water molecules based on local structure is essential for understanding their anomalous properties. However, due to complicated structural motifs formed via hydrogen bonds, conventional order parameters represent water molecules incompletely. In this paper, we develop GCIceNet, which automatically generates machine-based order parameters for classifying the phases of water molecules via supervised and unsupervised learning.

View Article and Find Full Text PDF

We measure isotope shifts for five Yb^{+} isotopes with zero nuclear spin on two narrow optical quadrupole transitions ^{2}S_{1/2}→^{2}D_{3/2}, ^{2}S_{1/2}→^{2}D_{5/2} with an accuracy of ∼300  Hz. The corresponding King plot shows a 3×10^{-7} deviation from linearity at the 3σ uncertainty level. Such a nonlinearity can indicate physics beyond the Standard Model (SM) in the form of a new bosonic force carrier, or arise from higher-order nuclear effects within the SM.

View Article and Find Full Text PDF

Surface tension plays a ubiquitous role in phase transitions including condensation or evaporation of atmospheric liquid droplets. In particular, understanding of interfacial thermodynamics of the critical nucleus of 1 nm scale is important for molecular characterization of the activation energy barrier of nucleation. Here, we investigate surface tension of spherical nanodroplets with both molecular dynamics and density functional theory and find that surface tension decreases appreciably below 1 nm radius, whose analytical expression is consistently derived from the classic Tolman's equation.

View Article and Find Full Text PDF

We theoretically investigate the nonlinear behavior of a buckled tip near the bifurcation point under external stress. We present a mechanical model for the buckled tip and derive the governing equation that describes the "buckling-to-flipping" nonlinear transition of the tip motion. Our minimal mechanistic model fully captures the velocity-dependent flipping phenomena, in which the flip position of the tip varies with the speed of the surface motion, as consistently observed in previous experiments.

View Article and Find Full Text PDF

A quartz tuning fork and its qPlus configuration show different characteristics in their dynamic features, including peak amplitude, resonance frequency, and quality factor. Here, we present an electromechanical model that comprehensively describes the dynamic responses of an electrically driven tuning fork and its qPlus configuration. Based on the model, we theoretically derive and experimentally validate how the peak amplitude, resonance frequency, quality factor, and normalized capacitance are changed when transforming a tuning fork to its qPlus configuration.

View Article and Find Full Text PDF

We introduce a nanopipette/quartz tuning fork (QTF)-atomic force microscope (AFM) for nanolithography and a nanorod/QTF-AFM for nanoscratching with in situ detection of shear dynamics during performance. Capillary-condensed nanoscale water meniscus-mediated and electric field-assisted small-volume liquid ejection and nanolithography in ambient conditions are performed at a low bias voltage (~10 V) via a nanopipette/QTF-AFM. We produce and analyze Au nanoparticle-aggregated nanowire by using nanomeniscus-based particle stacking via a nanopipette/QTF-AFM.

View Article and Find Full Text PDF

Structural transformations originating from diverse rearrangements of the hydrogen bonding in water create various phases. Although most phases have been well investigated down to the molecular level, the molecular structure of the nanomeniscus, a ubiquitous form of nanoscale water in nature, still remains unexplored. Here, we demonstrate that the water nanomeniscus exhibits the stable, ice-VII-like molecular structure in ambient condition.

View Article and Find Full Text PDF

Mechanical sensors provide core keys for high-end research in quantitative understanding of fundamental phenomena and practical applications such as the force or pressure sensor, accelerometer and gyroscope. In particular, in situ sensitive and reliable detection is essential for measurements of the mechanical vibration and displacement forces in inertial sensors or seismometers. However, enhancing sensitivity, reducing response time and equipping sensors with a measurement capability of bidirectional mechanical perturbations remains challenging.

View Article and Find Full Text PDF

When the surface of water is curved at nanoscale as a bubble, droplet and meniscus, its surface tension is expected to be smaller than that of planar interface, which still awaits experimental studies. Here, we report static and dynamic force spectroscopy that measures the capillary force of a single nanoscale water meniscus at constant curvature condition. Based on the Young-Laplace equation, the results are used to obtain the effective surface tension (ST) of the meniscus, which decreases to less than 20% of the bulk value at the radius-of-curvature (ROC) below 25 nm, while indicating the bulk behaviour above ~130 nm ROC.

View Article and Find Full Text PDF

Buckling, first introduced by Euler in 1744 [Euler L (1744) 24:231], a sudden mechanical sideways deflection of a structural member under compressive stress, represents a bifurcation in the solution to the equations of static equilibrium. Although it has been investigated in diverse research areas, such a common nonlinear phenomenon may be useful to devise a unique mechanical sensor that addresses the still-challenging features, such as the enhanced sensitivity and polarization-dependent detection capability. We demonstrate the bifurcation-enhanced sensitive measurement of mechanical vibrations using the nonlinear buckled cantilever tip in ambient conditions.

View Article and Find Full Text PDF

Solid-state transformation between different materials is often accompanied by mechanical expansion and compression due to their volume change and structural evolution at interfaces. However, these two types of dynamics are usually difficult to monitor in the same time. In this work, we use in situ transmission electron microscopy to directly study the reduction transformation at the AgCl-Ag interface.

View Article and Find Full Text PDF

We observe the hysteresis of a spontaneous symmetry breaking (SSB) transition in a parametrically modulated magneto-optical trap by sweeping the total number of atoms and study thermal hysteretic behavior in the system by measuring the scaling exponent of hysteresis. It is shown that the relaxation time of the order parameter in the SSB transition becomes larger near the critical number. The scaling exponent of the hysteresis area with number sweeping rate is found to be 0.

View Article and Find Full Text PDF

The viscometry of minute amounts of liquid has been in high demand as a novel tool for medical diagnosis and biological assays. Various microrheological techniques have shown the capability to handle small volumes. However, as the liquid volume decreases down to nanoliter scale, increasingly dominant surface effects complicate the measurement and analysis, which remain a challenge in microrheology.

View Article and Find Full Text PDF

Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy.

View Article and Find Full Text PDF