Purpose: To develop a user-friendly program for biological modeling to analyze radiation-induced responses at the scales of the cell population and organ.
Methods: The program offers five established cell population surviving fraction (SF) models to estimate the SF and the relative biological effectiveness (RBE) from clonogenic assay data, and two established models to calculate the normal tissue complication probability (NTCP) and tumor control probability (TCP) from radiation treatment plans. Users can also verify the results with multiple types of quantitative analyses and graphical representation tools.
The Korea Heavy Ion Medical Accelerator project focuses on the development of medical accelerator facilities for delivering carbon-ion beams to cancer patients. The purpose of the present study was to estimate the clinical need for carbon-ion therapy in Korea. Seven tumor sites, namely head and neck, liver, lung, colon and rectum, prostate, bone and soft tissue, and pancreas were selected as eligible sites for receiving carbon-ion radiotherapy (RT) by radiation oncologists of the Korea Institute of Radiological and Medical Sciences.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2017
A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.
View Article and Find Full Text PDFThe purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis.
View Article and Find Full Text PDFTo overcome radioresistance in the treatment of osteosarcoma, a primary malignant tumor of the bone, radiotherapy is generally combined with radiosensitizers. The purpose of this study was to investigate a third-generation bisphosphonate, zoledronic acid (ZOL), as a radiosensitizer for osteosarcoma. We found that exposure of KHOS/NP osteosarcoma cells to 20 μM ZOL decreased the γ-radiation dose needed to kill 90% of cells.
View Article and Find Full Text PDFColorectal cancer is one of the most common cancers worldwide. Previous studies suggest that chemoradiotherapy is more effective for the treatment of colorectal cancer than is radiotherapy or chemotherapy alone. To enhance the radiosensitivity of tumor cells, several investigators have used targeted therapeutic agents that act as radiosensitizers.
View Article and Find Full Text PDFEndothelial cells (ECs), that comprise the tumor vasculature, are critical targets for anticancer radiotherapy. The aim of this work was to study the mechanism by which SU5416, a known anti-angiogenesis inhibitor, modifies the radiation responses of human vascular ECs. Two human endothelial cell lines (HUVEC and 2H11) were treated with SU5416 alone, radiation alone, or a combination of both.
View Article and Find Full Text PDFColorectal cancer is one of the most common malignancies in the world, and is generally treated more effectively by chemoradiotherapy rather than radiotherapy or chemotherapy alone. Targeted radiosensitizers are often used in order to enhance the radiosensitivity of tumor cells. The aim of the present study was to identify the mechanism of radiosensitization by sorafenib in colorectal cancer.
View Article and Find Full Text PDFConventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime.
View Article and Find Full Text PDFThe purpose of this study was to investigate the efficacy of metformin as a radiosensitizer for use in combination therapy for human hepatocellular carcinoma (HCC). Three human HCC cell lines (Huh7, HepG2, Hep3B) and a normal human hepatocyte cell line were treated with metformin alone or with radiation followed by metformin. In vitro tests were evaluated by clonogenic survival assay, FACS analysis, western blotting, immunofluorescence and comet assay.
View Article and Find Full Text PDFPurpose: With the introduction of flattening filter free (FFF) linear accelerators to radiation oncology, new analytical source models for a FFF beam applicable to current treatment planning systems is needed. In this work, a multisource model for the FFF beam and the optimization of involved model parameters were designed.
Methods: The model is based on a previous three source model proposed by Yang et al.