The globally vital oil palm, a major oil producer, confronts productivity challenges due to Ganoderma boninense (Gb), causing output decline. Chemical control efforts have proven ineffective, prompting exploration of microbial-based biocontrol. While single fungal biocontrol research exists, the impact of employing multiple biocontrols concurrently to combat Ganoderma and enhance oil palm growth remains uncharted.
View Article and Find Full Text PDFCoconut (Cocos nucifera) is a high economic value cash crop in Malaysia. In December 2021, irregular spots with dotted rust-like appearance were observed mainly on the tip of the leaves of MATAG variety coconut seedlings at the nursery in Perak state. More than 90% of the coconut seedlings surveyed were infected with leaf spot symptoms.
View Article and Find Full Text PDFIn today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand.
View Article and Find Full Text PDFwhich causes white root rot disease (WRD) in is a looming threat to rubber plantation in Malaysia. The current study was conducted to determine and evaluate the efficiency of fungal antagonists (Ascomycota) against in rubber trees under laboratory and nursery conditions. A total of 35 fungal isolates established from the rubber tree rhizosphere soil were assessed for their antagonism against by the dual culture technique.
View Article and Find Full Text PDFBackground: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G.
View Article and Find Full Text PDFEfforts are ongoing by researchers globally to develop new drugs or repurpose existing ones for treating COVID-19. Thus, this led to the use of oseltamivir, an antiviral drug used for treating influenza A and B viruses, as a trial drug for COVID-19. However, available evidence from clinical studies has shown conflicting results on the effectiveness of oseltamivir in COVID-19 treatment.
View Article and Find Full Text PDFRice brown spot (BS) exerts devastating agronomic effects on grain quality and overall productivity. In Peninsular Malaysia, BS disease incidence is fairly prevalent and little is known about the diversity of BS pathogens in the local granaries. Fifteen isolates from BS symptomatic rice plants were identified at five different rice granaries across Peninsular Malaysia.
View Article and Find Full Text PDFBasal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G.
View Article and Find Full Text PDFThe basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G.
View Article and Find Full Text PDFPseudomonas aeruginosa developed its biocontrol agent property through the production of antifungal derivatives, with the phenazine among them. In this study, the applications of crude phenazine synthesized by Pseudomonas aeruginosa UPMP3 and hexaconazole were comparatively evaluated for their effectiveness to suppress basal stem rot infection in artificially G. boninense-challenged oil palm seedlings.
View Article and Find Full Text PDFObjective: Basal stem rot disease causes severe economic losses to oil palm production in South-east Asia and little is known on the pathogenicity of the pathogen, the basidiomyceteous Ganoderma boninense. Our data presented here aims to identify both the house-keeping and pathogenicity genes of G. boninense using Illumina sequencing reads.
View Article and Find Full Text PDFBasal stem rot, caused by the basidiomycete fungus, , is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design.
View Article and Find Full Text PDFA highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense.
View Article and Find Full Text PDFPlant defensins are plant defence peptides that have many different biological activities, including antifungal, antimicrobial, and insecticidal activities. A cDNA (EgDFS) encoding defensin was isolated from Elaeis guineensis. The open reading frame of EgDFS contained 231 nucleotides encoding a 71-amino acid protein with a predicted molecular weight at 8.
View Article and Find Full Text PDFGanoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described.
View Article and Find Full Text PDFPhosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia).
View Article and Find Full Text PDFPrimers corresponding to conserved bacterial repetitive of BOX elements were used to show that BOX-DNA sequences are widely distributed in phosphate solubilizing Pseudomonas strains. Phosphate solubilizing Pseudomonas was isolated from oil palm fields (tropical soil) in Malaysia. BOX elements were used to generate genomic fingerprints of a variety of Pseudomonas isolates to identify strains that were not distinguishable by other classification methods.
View Article and Find Full Text PDFNitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family.
View Article and Find Full Text PDFBasal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G.
View Article and Find Full Text PDFA DNA macroarray was previously developed to detect major fungal and oomycete pathogens of solanaceous crops. To provide a convenient alternative for researchers with no access to X-ray film-developing facilities, specific CCD cameras or Chemidoc XRS systems, a chromogenic detection method with sensitivity comparable with chemiluminescent detection, has been developed. A fungal (Stemphylium solani) and an oomycete (Phytophthora capsici) pathogen were used to develop the protocol using digoxigenin (DIG)-labeled targets.
View Article and Find Full Text PDFThe introduction of a double-stranded RNA (dsRNA) into an organism to induce sequence-specific RNA interference (RNAi) of a target transcript has become a powerful technique to investigate gene function in nematodes and many organisms. Data provided here indicate that the inclusion of 1-2 mM spermidine and 50 mM octopamine and a 24 hr incubation period of nematodes in double-stranded RNA (dsRNA) soaking solutions resulted in a considerable increase in the percentage of nematodes that ingested dsRNA as compared to previous reports. This modified dsRNA soaking method was coupled with quantitative real-time RT-PCR (qRT-PCR) analyses to assess the potential silencing of the Heterodera glycines parasitism gene transcripts Hg-pel-1 and Hg-4E02 that are expressed within the esophageal gland cells of preparasitic H.
View Article and Find Full Text PDF