Publications by authors named "Wong Hin Yong"

This paper presents the detailed design configuration and investigation of a small-scale dual-band metamaterial absorber (MTMA) for solid and liquid sensing applications. The overall dimension of the MTMA unit cell is 10 × 10 × 1.57 mm and constitutes an affordable FR-4 substrate.

View Article and Find Full Text PDF

This article presents a novel real-time meta-material (MM) sensor based on a non-invasive method that operates in microwave frequency ranges at 8.524 GHz to measure blood glucose levels with quality factor 184 is designed and fabricated. A cross enclosed between two square shapes produces a strong interaction between glucose samples and electromagnetic waves.

View Article and Find Full Text PDF

Metamaterials have gained much attention due to their exciting characteristics and potential uses in constructing valuable technologies. This paper presents a double negative square resonator shape metamaterial sensor to detect the material and its thickness. An innovative double-negative metamaterial sensor for microwave sensing applications is described in this paper.

View Article and Find Full Text PDF

In wireless communication networks, the necessity for high-speed data rates has increased in emerging 5G application areas. The Power Amplifier (PA) topologies reported to date achieved desired Power Added Efficiency (PAE) and linearity. However, these harmonically tuned switching PAs are less appealing for broadband applications as they are restricted to narrow bandwidth (BW).

View Article and Find Full Text PDF

A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property.

View Article and Find Full Text PDF

A multiband coplanar waveguide (CPW)-fed antenna loaded with metamaterial unit cell for GSM900, WLAN, LTE-A, and 5G Wi-Fi applications is presented in this paper. The proposed metamaterial structure is a combination of various symmetric split-ring resonators (SSRR) and its characteristics were investigated for two major axes directions at (x and y-axis) wave propagation through the material. For x-axis wave propagation, it indicates a wide range of negative refractive index in the frequency span of 2-8.

View Article and Find Full Text PDF

In this paper, a defected ground-structured antenna with a stub-slot configuration is proposed for future 5G wireless applications. A simple stub-slot configuration is used in the patch antenna to get the dual band frequency response in the 5G mid-band and the upper unlicensed frequency region. Further, a 2-D double period Electronic band gap (EBG) structure has been implemented as a defect in the metallic ground plane to get a wider impedance bandwidth.

View Article and Find Full Text PDF

Charge loss mechanisms of nanoscale charge trap non-volatile memory devices are carefully examined and studied. Fowler-Nordheim tunnelling mechanism is used to perform rapid program/erase cycling. Based on the good fit of post cycled and baked threshold voltage data to Stretched Exponential function, the lowest point and the peak of Vt distribution were found to evolve in a similar manner that resulted to similar derived Ea.

View Article and Find Full Text PDF

This paper is written to review the development of critical research on the overall impact of tunnel oxide nitridation (TON) with the aim to mitigate reliability issues due to incessant technology scaling of charge storage NVM devices. For more than 30 years, charge storage non-volatile memory (NVM) has been critical in the evolution of intelligent electronic devices and continuous development of integrated technologies. Technology scaling is the primary strategy implemented throughout the semiconductor industry to increase NVM density and drive down average cost per bit.

View Article and Find Full Text PDF

The range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels.

View Article and Find Full Text PDF