Publications by authors named "Wondwosen Aregawi"

Objective: The current study aimed to evaluate the effects of different combinations of chemical and mechanical challenges on the failure load, failure mode and composition of the resulting fracture surfaces of resin-composite restorations.

Methods: Three resin composites were used to fill dentin disks (2 mm inner diameter, 5 mm outer diameter, and 2 mm thick) made from bovine incisor roots. The model restorations, half of which were preconditioned with a low-pH buffer (48 h under pH 4.

View Article and Find Full Text PDF

The study aimed to compare shrinkage displacements of fully and partially bonded resin composite restorations (RCRs). Two groups (n=5) Class-I RCR evaluated: Group 1 (G1) fully bonded and Group 2 (G2) debonded at the floor. Experimental results were compared with predictions from simple theory and finite element analysis (FEA).

View Article and Find Full Text PDF

Introduction: Vertical root fracture (VRF) in root canal-treated (RCT) teeth is a common cause of pain, bone resorption, and tooth loss. VRF is also difficult to diagnose and measure. Magnetic resonance imaging (MRI) has the potential to identify VRF due to beneficial partial volume averaging, without using ionizing radiation.

View Article and Find Full Text PDF

This study systematically compared the mechanical performances and polymerization shrinkage of two novel dual-cured resin composites (DCRC) with one conventional packable light-cured resin composite (LCRC) for their application as core build-up material by micro-hardness test, flexural strength test, push-out test, and digital image correlation analysis. The LCRC had a significantly higher micro-hardness (p<0.05) whereas the bond strength demonstrated no difference.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effect of different chamfer preparations on the load capacity of reattached fractured incisors under lingual loading.

Methods: Eighty #8 typodonts were randomly assigned to four groups (n = 20 each). They were sectioned to simulate crown fracture, and reattached with a self-etch adhesive and a resin composite.

View Article and Find Full Text PDF

Objective: This paper aimed to derive analytical solutions for the shrinkage stress and cuspal deflection in model Class-II mesial-occlusal-distal (MOD) resin-composite restorations to better understand their dependence on geometrical and material parameters. Based on the stress solutions, it was shown how design curves could be obtained to guide the selection of dimensions and materials for the preparation and restoration of this class of cavities.

Methods: The cavity wall was considered as a cantilevered beam while the resin composite was modeled as Winkler's elastic foundation with closely-spaced linear springs.

View Article and Find Full Text PDF

Additive manufacturing or 3D printing can be applied in the food sector to create food products with personalized properties such as shape, texture, and composition. In this article, we introduce a computer aided engineering (CAE) methodology to design 3D printed food products with tunable mechanical properties. The focus was on the Young modulus as a proxy of texture.

View Article and Find Full Text PDF

Objectives: Using standardized aluminum tooth models, this study: 1) measured the deflection along the cusp wall of models with a Class II cavity restored using either bulk filling or horizontal incremental filling techniques, and 2) calculated the cusp deflection and built-in stress within the restored tooth models for both filling techniques using a finite element (FE) model.

Methods: Standardized tooth models with Class II cavities 4 mm deep, 4 mm high and 6 mm wide were machined out of aluminum. The models were restored using Filtek Posterior Restorative A2 shade resin-based composite (RBC).

View Article and Find Full Text PDF

Objective: This study aims to assess the validity of a recent theory which proposes that (1) the magnitude of the shrinkage stress of resin composites depends on the thickness of the boundary layer under triaxial constraints relative to the total thickness of the specimen and (2) the boundary-layer thickness is proportional to the diameter of the specimen.

Methods: Cylindrical specimens of three commercially available resin composites, three diameters (4, 5 and 6.3mm) and four thicknesses (2, 3, 5 and 6.

View Article and Find Full Text PDF

Currently, resin composites are the most popular materials for dental restoration in clinical practice. Although the properties of such materials have been improved significantly, together with better clinical techniques used for their placement, early restoration failure still occurs too frequently. As clinical studies take years to complete, and new resin composites are being produced at ever increasing pace, laboratory assessment using accelerated but representative tests is necessary.

View Article and Find Full Text PDF

Objective: A method proposed for determining the fracture toughness (FT) of dental materials involves a 'roller' wedging open a V-notch in a cylindrical specimen. There are a number of problems with the design of this test and its mechanical analysis, and thus with the validity of the results obtained, were it to be used. Firstly, friction is ignored in calculating the horizontal wedging force.

View Article and Find Full Text PDF

Objective: The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement.

Methods: Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses.

View Article and Find Full Text PDF

Objectives: Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements.

View Article and Find Full Text PDF

Objective: This paper presents and verifies a simple predictive formula for laboratory shrinkage-stress measurement in dental composites that can account for the combined effect of material properties, sample geometry and instrument compliance.

Methods: A mathematical model for laboratory shrinkage-stress measurement that includes the composite's elastic modulus, shrinkage strain, and their interaction with the sample's dimensions and the instrument's compliance has previously been developed. The model contains a dimensionless parameter, R, which represents the compliance of the instrument relative to that of the cured composite sample.

View Article and Find Full Text PDF

A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration.

View Article and Find Full Text PDF

Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant-atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein.

View Article and Find Full Text PDF