Transparent, inorganic composite materials are of broad interest, from structural components in astronomical telescopes and mirror supports to solid-state lasers, smart window devices, and gravitational wave detectors. Despite great progress in material synthesis, it remains a standing challenge to fabricate such transparent glass composites with high crystallinity (HC-TGC). Here, we demonstrate the co-solidification of a mixture of melts with a stark contrast in crystallization habit as an approach for preparing HC-TGC materials.
View Article and Find Full Text PDFMetal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C.
View Article and Find Full Text PDFHybrid glasses derived from meltable metal-organic frameworks (MOFs) promise to combine the intriguing properties of MOFs with the universal processing ability of glasses. However, the shaping of hybrid glasses in their liquid state - in analogy to conventional glass processing - has been elusive thus far. Here, we present optical-quality glasses derived from the zeolitic imidazole framework ZIF-62 in the form of cm-scale objects.
View Article and Find Full Text PDFHere we describe the synthesis of a compositional series of metal-organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20NaO-10NaCl-70PO, to expand the library of host matrices for metal-organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O-P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data.
View Article and Find Full Text PDFPorous metal-organic frameworks have emerged to resolve important challenges of our modern society, such as CO sequestration. Zeolitic imidazolate frameworks (ZIFs) can undergo a glass transition to form ZIF glasses; they combine the liquid handling of classical glasses with the tremendous potential for gas separation applications of ZIFs. Using millimetre-sized ZIF-62 single crystals and centimetre-sized ZIF-62 glass, we demonstrate the scalability and processability of our materials.
View Article and Find Full Text PDFSilicate glasses with metallic nanoparticles (NPs) have been of intense interest in art, science and technology as the plasmonic properties of these NPs equip glass with light modulation capability. The so-called striking technique has enabled precise control of the in situ formation of metallic NPs in silicate glasses for applications from coloured glasses to photonic devices. Since tellurite glasses exhibit the unique combination of comparably easy fabrication, low phonon energy, wide transmission window and high solubility of luminescent rare earth ions, there has been a significant amount of work over the past two decades to adapt the striking technique to form gold or silver NPs in tellurite glasses.
View Article and Find Full Text PDFRecently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30NaO-70PO, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass.
View Article and Find Full Text PDFThe interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.
View Article and Find Full Text PDFUnderstanding the multivariate origin of physical properties is particularly complex for polyionic glasses. As a concept, the term genome has been used to describe the entirety of structure-property relations in solid materials, based on functional genes acting as descriptors for a particular property, for example, for input in regression analysis or other machine-learning tools. Here, the genes of ionic conductivity in polyionic sodium-conducting glasses are presented as fictive chemical entities with a characteristic stoichiometry, derived from strong linear component analysis (SLCA) of a uniquely consistent dataset.
View Article and Find Full Text PDFFabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min.
View Article and Find Full Text PDFCharacterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures.
View Article and Find Full Text PDFUltrasound-induced mechanoluminescence (USML) of Erbium-doped CaZnOS is reported. Using the fluorescence intensity ratio of the H , S → I transitions of Er allows for simultaneous temperature mapping at an absolute sensitivity of 0.003 K in the physiological regime.
View Article and Find Full Text PDFHere, we propose the combination of glassy or crystalline metal-organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented.
View Article and Find Full Text PDFWe report on the fabrication and characterization of homogeneous, monophasic sodium metaphosphate and polyethylene glycol hybrid composites achieved via coacervation in aqueous solution. After separation and drying, an amorphous plastic solid is formed, composed mostly of hydrated sodium phosphate moieties amalgamated with polyethylene glycol chains. These composites are largely X-ray amorphous and can contain up to 8 weight percent of polymer.
View Article and Find Full Text PDFWe report the effect of structural compaction on the statistics of elastic disorder in a silicate glass, using heterogeneous elasticity theory with the coherent potential approximation (HET-CPA) and a log-normal distribution of the spatial fluctuations of the shear modulus. The object of our study, a soda lime magnesia silicate glass, is compacted by hot-compression up to 2 GPa (corresponding to a permanent densification of ~ 5%). Using THz vibrational spectroscopic data and bulk mechanical properties as inputs, HET-CPA evaluates the degree of disorder in terms of the length-scale of elastic fluctuations and the non-affine part of the shear modulus.
View Article and Find Full Text PDFGlasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance.
View Article and Find Full Text PDFUnderstanding the interactions among dopant species and the role of the host lattice is of fundamental importance for the chemical formulation of optically active glasses. Here, we consider the archetypal dopant pair of Ag-Ce in complex fluorophosphate (PF) and sulfophosphate (PS) matrices, in which variable bonding environments and ligand selectivity exert distinct effects on dopant properties. The addition of Ag to PF glasses blue-shifts the ultraviolet (UV) cutoff wavelength of Ce and enhances its photoluminescence (PL) intensity.
View Article and Find Full Text PDFHybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the crystalline MOFs are meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting.
View Article and Find Full Text PDFA quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate--spiropyran acrylate) (P (TEGA--SPA)) copolymer containing 12-14% of spiropyran at the silica-water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA--SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution.
View Article and Find Full Text PDFFiber gratings are among key components in fiber-based photonics systems and, particularly, laser cavities. In the latter, they can play multiple roles, such as those of mirrors, polarizers, filters, or dispersion compensators. In this Letter, we present the inscription of highly reflective first-order fiber Bragg gratings (FBGs) in soft indium fluoride-based () fibers using a two-beam phase-mask interferometer and a femtosecond laser.
View Article and Find Full Text PDFThe thermal behaviour of ZIF-8, Zn(meIm)2 in the presence of a sodium fluoroaluminophosphate glass melt was probed through differential scanning calorimetry and thermogravimetric analysis. The structural integrity of ZIF-8 was then determined by a combination of powder X-ray diffraction, Fourier transform infra-red and 1H nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFGiven the ubiquity of glass formulations that are functionalized with silver compounds, the electronic interaction between isolated silver cations and the glass network deserves more attention. Here, we report the structural origin of the optical properties that result from silver doping in fluorophosphate (PF) and sulfophosphate (PS) glasses. To achieve this, solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) are combined with optical spectroscopic analysis and physical property measurements.
View Article and Find Full Text PDFMetal-organic framework (MOF) glasses have emerged as a new class of melt-quenched glasses; however, so far, all MOF glass production has remained at lab-scale; future applications will require large-scale, commercial production of parent crystalline MOFs. Yet, control of synthetic parameters, such as uniform temperature and mixing, can be challenging, particularly, when scaling-up production of a mixed-linker MOF or a zeolitic imidazolate framework (ZIF). Here, we examine the effect of heterogeneous linker distribution on the thermal properties and melting behavior of ZIF-62.
View Article and Find Full Text PDFMetal-organic framework (MOF) glasses have become a subject of interest as a distinct category of melt quenched glass, and have potential applications in areas such as ion transport and sensing. In this paper we show how MOF glasses can be combined with inorganic glasses in order to fabricate a new family of materials composed of both MOF and inorganic glass domains. We use an array of experimental techniques to propose the bonding between inorganic and MOF domains, and show that the composites produced are more mechanically pliant than the inorganic glass itself.
View Article and Find Full Text PDF