Publications by authors named "Wonchan Kim"

Article Synopsis
  • This study examines the effects of melatonin and Bacillus sp. strain IPR-4, a plant growth-promoting rhizobacteria (PGPR), on soybean's drought stress tolerance.
  • The researchers selected IPR-4 based on its strong growth-promoting traits and resilience under varying drought conditions.
  • Results showed that co-inoculating soybean plants with IPR-4 and melatonin significantly improved plant height and biomass, increased chlorophyll content, and enhanced various antioxidant enzyme activities while reducing harmful compounds related to stress.
View Article and Find Full Text PDF

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress.

View Article and Find Full Text PDF

Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by . In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against .

View Article and Find Full Text PDF

Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited.

View Article and Find Full Text PDF

Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants.

View Article and Find Full Text PDF
Article Synopsis
  • Human fetal midbrain-derived dopamine neuronal precursor cells are being researched as a potential cell-based therapy for Parkinson's disease due to their ability to improve motor dysfunctions.
  • A phase I/IIa clinical trial involved 15 patients receiving varying doses of these cells, focusing on safety and therapeutic effectiveness over a 12-month period.
  • While significant motor improvements were noted in the treatment groups, these outcomes did not correlate strongly with dopamine transporter levels, indicating potential efficacy and safety of the treatment without serious complications.
View Article and Find Full Text PDF

Introduction: Drought has become more prevalent due to dramatic climate change worldwide. Consequently, the most compatible fungal communities collaborate to boost plant development and ecophysiological responses under environmental constraints. However, little is known about the specific interactions between non-host plants and endophytic fungal symbionts that produce growth-promoting and stress-alleviating hormones during water deficits.

View Article and Find Full Text PDF

Background: Plants have evolved to adapt to the ever-changing environments through various morphological changes. An organism anticipates and responds to changes in its environment via the circadian clock, an endogenous oscillator lasting approximately 24 h. The circadian clock regulates various physiological processes, such as hypocotyl elongation in Arabidopsis thaliana.

View Article and Find Full Text PDF

Overexpression of acdS in petunia negatively affects seed germination by suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid biosynthesis genes in the seeds. The acdS gene, which encodes 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, has been overexpressed in horticultural crops to improve their tolerance to abiotic stress. However, the role of acdS in the germination of crop seeds has not been investigated, despite its suppression of ethylene production.

View Article and Find Full Text PDF

Vinegar, composed of various organic acids, amino acids, and volatile compounds, has been newly recognized as a functional food with health benefits. Vinegar is produced through alcoholic fermentation of various raw materials followed by acetic acid fermentation, and detailed processes greatly vary between different vinegar products. This study performed metabolite profiling of various vinegar products using gas chromatography-mass spectrometry to identify metabolites that are specific to vinegar production processes.

View Article and Find Full Text PDF
Article Synopsis
  • MYB46 is a key transcription factor that regulates secondary cell wall biosynthesis, essential for plant growth and development.
  • The function of MYB46 is modulated by MPK6, which phosphorylates MYB46, leading to its degradation when secondary walls are not needed.
  • Additionally, MYB83, a related protein, does not undergo regulation by MPK6, highlighting specific signaling pathways for MYB46 in different tissues and conditions.
View Article and Find Full Text PDF

Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes.

View Article and Find Full Text PDF

Keratin degradation is of great interest for converting agro-industrial waste into bioactive peptides and is directly relevant for understanding the pathogenesis of superficial infections caused by dermatophytes. However, the mechanism of this process remains unclear. Here, we obtained the complete genome sequence of a feather-degrading, extremely thermophilic bacterium, Fervidobacterium islandicum AW-1 and performed bioinformatics-based functional annotation.

View Article and Find Full Text PDF

Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof.

View Article and Find Full Text PDF

Ginkgo biloba is a dioecious tree that has been used in traditional Chinese medicine for about 5,000 years. In previous studies on ginkgo biloba extract (EGb761) using in vitro systems, we confirmed that EGb761 has biphasic effects on estrogenicity. In this study, we evaluated the agonistic and antagonistic activities of EGb761 using a uterotrophic assay in immature female rats.

View Article and Find Full Text PDF

Some plant growth-promoting bacteria encode for 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which facilitates plant growth and development by lowering the level of stress ethylene under waterlogged conditions. The substrate ACC is the immediate precursor for ethylene synthesis in plants; while bacterial ACC deaminase hydrolyzes this compound into α-ketobutyrate and ammonia to mitigate the adverse effects of the stress caused by ethylene exposure. Here, the structure and function of ACC deaminase, ethylene biosynthesis and waterlogging response, waterlogging and its consequences, role of bacterial ACC deaminase under waterlogged conditions, and effect of this enzyme on terrestrial and riparian plants are discussed.

View Article and Find Full Text PDF

Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.

View Article and Find Full Text PDF

Red blood cell distribution width (RDW) is one of the routine hematologic parameters reported in the complete blood count test, which has been recognized as strong prognostic marker for various medical conditions, especially cardiovascular disease. We evaluated that RDW was also associated with the leukoaraiosis; common radiological finding of brain and that has been strongly associated with risk of stroke and dementia. In the present study, we included 1006 non-stroke individuals who underwent brain MRI and routine complete blood count test including RDW.

View Article and Find Full Text PDF

Purpose: To investigate the correlation between the striatal three-dimensional location and the Unified Parkinson's Disease Rating Scale (UPDRS) motor score in the context of idiopathic Parkinson's disease (PD) through radiolabeled N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane positron emission tomography/computed tomography (FP-CIT PET/CT).

Materials And Methods: In this cross-sectional study, we assessed the UPDRS motor score and performed FP-CIT PET/CT in patients with PD. Thirty-eight patients with idiopathic PD [average 70 years of age (range 49-86); male:female ratio 12:26] were enrolled.

View Article and Find Full Text PDF

Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art.

View Article and Find Full Text PDF

AtC3H14 (At1 g66810) is a plant-specific tandem CCCH zinc-finger (TZF) protein that belongs to the 68-member CCCH family in Arabidopsis thaliana. In animals, TZFs have been shown to bind and recruit target mRNAs to the cytoplasmic foci where mRNA decay enzymes are active. However, it is not known whether plant TZF proteins such as AtC3H14 function.

View Article and Find Full Text PDF

Secondary wall formation requires coordinated transcriptional regulation of the genes involved in the biosynthesis of the components of secondary wall. Transcription factor (TF) MYB46 (At5g12870) has been shown to function as a central regulator for secondary wall formation in Arabidopsis thaliana, activating biosynthetic genes as well as the TFs involved in the pathways. Recently, we reported that MYB46 directly regulates secondary wall-associated cellulose synthase (CESA4, CESA7, and CESA8) and a mannan synthase (CSLA9) genes.

View Article and Find Full Text PDF

The timing of the onset and release of dormancy impacts the survival, productivity and spatial distribution of temperate horticultural and forestry perennials and is mediated by at least three main regulatory programs involving signal perception and processing by phytochromes (PHYs) and PHY-interacting transcription factors (PIFs). PIF4 functions as a key regulator of plant growth in response to both external and internal signals. In poplar, the expression of PIF4 and PIF3-LIKE1 is upregulated in response to short days, while PHYA and PHYB are not regulated at the transcriptional level.

View Article and Find Full Text PDF

Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family.

View Article and Find Full Text PDF

Cellulose, the most abundant biopolymer on Earth, is a central component in plant cell walls and highly abundant (up to 50%) in the secondary walls. In Arabidopsis thaliana, the cellulose biosynthesis in the secondary walls is catalyzed by three cellulose synthases CESA4, CESA7 and CESA8. The transcription factor MYB46 and its close homolog MYB83 directly regulate the expression of the three secondary wall cellulose synthases (CESAs).

View Article and Find Full Text PDF