Publications by authors named "Wonacott A"

Optimization of a pyrrolidine-based template using structure-based design and physicochemical considerations has provided a development candidate 20b (3082) with submicromolar potency in the HCV replicon and good pharmacokinetic properties.

View Article and Find Full Text PDF

Described herein is a modern approach to the rapid preparation and evaluation of compounds as potential back-up drug candidates. GW311616A, 1, a derivative of pyrrolidine trans-lactams, has previously been described as a potent, orally active inhibitor of human neutrophil elastase (HNE) for the treatment of respiratory disease. These properties made it a suitable candidate for development.

View Article and Find Full Text PDF

SAR investigations of the 4- and 5-positions of a series of 4-amino-4H-pyran-2-carboxylic acid 6-carboxamides are reported. Potent inhibitors of influenza A sialidase with marked selectivity over the influenza B enzyme were obtained when the basic 4-amino substituent was replaced by hydroxyl or even deleted. Modifications at the 5-position exhibited a tight steric requirement, with trifluoroacetamide being optimal.

View Article and Find Full Text PDF

Background: Bacterial signal recognition particle (SRP), consisting of 4.5S RNA and Ffh protein, plays an essential role in targeting signal-peptide-containing proteins to the secretory apparatus in the cell membrane. The 4.

View Article and Find Full Text PDF

Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal structure of human SULT1A3, complexed with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.

View Article and Find Full Text PDF

The binding modes of four active site-directed, acylating inhibitors of human alpha-thrombin have been determined using X-ray crystallography. These inhibitors (GR157368, GR166081, GR167088, and GR179849) are representatives of a series utilizing a novel 5, 5-trans-lactone template to specifically acylate Ser195 of thrombin, resulting in an acyl complex. In each case the crystal structure of the complex reveals a binding mode which is consistent with the formation of a covalent bond between the ring-opened lactone of the inhibitor and residue Ser195.

View Article and Find Full Text PDF

High-throughput screening of methanolic extracts from the leaves of the plant Lantana camara identified potent inhibitors of human alpha-thrombin, which were shown to be 5,5-trans-fused cyclic lactone euphane triterpenes [O'Neill et al. (1998) J. Nat.

View Article and Find Full Text PDF

Proflavin can be used to study the interactions of inhibitors and substrates with thrombin by monitoring the changes in the visible absorption spectrum that occur on dye displacement. We have used microspectrophotometric methods to investigate the binding of proflavin to crystals of an alpha-thrombin-hirugen complex and have determined the structure by X-ray crystallography. The proflavin molecule binds in the S1 pocket of the enzyme with one of the amino groups hydrogen bonded to the carboxylate of Asp-189 while the protonated ring nitrogen is hydrogen bonded to the carbonyl of Gly-219.

View Article and Find Full Text PDF

The first paper in this series (see previous article) described structure-activity studies of carboxamide analogues of zanamivir binding to influenza virus sialidase types A and B and showed that inhibitory activity of these compounds was much greater against influenza A enzyme. To understand the large differences in affinities, a number of protein-ligand complexes have been investigated using crystallography and molecular dynamics. The crystallographic studies show that the binding of ligands containing tertiary amide groups is accompanied by the formation of an intramolecular planar salt bridge between two amino acid residues in the active site of the enzyme.

View Article and Find Full Text PDF

Coumarin antibiotics, such as clorobiocin, novobiocin, and coumermycin A1, inhibit the supercoiling activity of gyrase by binding to the gyrase B (GyrB) subunit. Previous crystallographic studies of a 24-kDa N-terminal domain of GyrB from E. coli complexed with novobiocin and a cyclothialidine analogue have shown that both ligands act by binding at the ATP-binding site.

View Article and Find Full Text PDF

Background: UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyses the first committed step of bacterial cell wall biosynthesis and is a target for the antibiotic fosfomycin. The only other known enolpyruvyl transferase is 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, an enzyme involved in the shikimic acid pathway and the target for the herbicide glyphosate. Inhibitors of enolpyruvyl transferases are of biotechnological interest as MurA and EPSP synthase are found exclusively in plants and microbes.

View Article and Find Full Text PDF

Phosphomannose isomerase (PMI) catalyses the reversible isomerization of fructose-6-phosphate (F6P) and mannose-6-phosphate (M6P). Absence of PMI activity in yeasts causes cell lysis and thus the enzyme is a potential target for inhibition and may be a route to antifungal drugs. The 1.

View Article and Find Full Text PDF

This study describes the first crystal structures of a complex between a DNA topoisomerase and a drug. We present the structures of a 24 kDa N-terminal fragment of the Escherichia coli DNA gyrase B protein in complexes with two different inhibitors of the ATPase activity of DNA gyrase, namely the coumarin antibiotic, novobiocin, and GR122222X, a member of the cyclothialidine family. These structures are compared with the crystal structure of the complex with an ATP analogue, adenylyl-beta-gamma-imidodiphosphate (ADPNP).

View Article and Find Full Text PDF

The chemotactic cytokine RANTES (Regulated on Activation, Normal T-cell Expressed and Secreted) is a potent chemoattractant and activator of a number of leukocytes, with a molecular mass of 8 kDa. Crystals of this protein have been grown from 100 mM sodium acetate buffer (pH 4.6) containing 200 mM magnesium acetate, with 20% (w/v) PEG 4000 and 6% (v/v) glycerol.

View Article and Find Full Text PDF

A 24 kDa N-terminal fragment of the Escherichia coli DNA gyrase B protein has been crystallized in the presence of novobiocin. One crystal form has been obtained that is orthorhombic, P2(1)2(1)2(1), with unit cell dimensions a = 40.3 A, b = 47.

View Article and Find Full Text PDF

In the development of a treatment for AIDS, the HIV-1 protease has been identified as a good target enzyme for inhibitor design. We previously reported a series of dimeric penicillin-derived C2-symmetric HIV-1 protease inhibitors [Humber, D., et al.

View Article and Find Full Text PDF

Crystals of recombinant phosphomannose isomerase from Candida albicans have been obtained in a form suitable for X-ray diffraction analysis. The enzyme plays a key role in the biosynthesis of the mannan component of the fungal cell wall. It crystallizes in monoclinic space group C2, with cell dimensions a = 124.

View Article and Find Full Text PDF

The active site of the glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contains two anion recognition sites which have been attributed to the phosphate binding of the substrates, namely, glyceraldehyde 3-phosphate (Ps site) and inorganic phosphate (Pi site) [Moras et al. (1975) J. Biol.

View Article and Find Full Text PDF

The binding modes of a series of penicillin-derived C2 symmetric dimer inhibitors of HIV-1 proteinase were investigated by NMR, protein crystallography, and molecular modeling. The compounds were found to bind in a symmetrical fashion, tracing and S-shaped course through the active site, with good hydrophobic interactions in the S1/S1' and S2/S2' pockets and hydrogen bonding of inhibitor amide groups. Interactions with the catalytic aspartates appeared poor and the protein conformation was very similar to that seen in complexes with peptidomimetics, in spite of the major differences in ligand structure.

View Article and Find Full Text PDF

On the basis of the three-dimensional structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and of sequence comparison with the photosynthetic NAD(P)-dependent GAPDH of the chloroplast, a series of mutants of GAPDH from Bacillus stearothermophilus have been constructed. The results deduced from kinetic and binding studies suggest that the absence of activity of the wild-type GAPDH with NADP as a cofactor is the consequence of at least three factors: (1) steric hindrance, (2) electrostatic repulsion between the charged carboxyl group of Asp32 and the 2'PO4, and (3) structural determinants at the subunit interface of the tetramer. The best value for kcat/KM and KD for NADP was observed for the D32A-L187A-P188S mutant.

View Article and Find Full Text PDF

Directed mutagenesis has been used to study the nicotinamide subsite of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Residue Asn313 is involved together with the carboxyamide moiety of the nicotinamide ring in a complex network of hydrogen bonding interactions which fix the position of the pyridinium ring of NAD to which hydride transfer occurs at the C-4 position in the catalytic reaction. The asparagine side-chain has been replaced by that of the Thr and Ala residues and results in mutants with very similar properties.

View Article and Find Full Text PDF

By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis.

View Article and Find Full Text PDF

The globular domain of histone H1/H5 binds to the nucleosome and is crucial for the formation of chromatin higher order structure. We have expressed in Escherichia coli a gene that codes for the globular domain of H5. The protein produced in E.

View Article and Find Full Text PDF

Crystals of porcine synovial collagenase suitable for an X-ray structure analysis have been obtained. The crystals belong to space group I4, with unit cell dimensions a = b = 160.0 A, c = 53.

View Article and Find Full Text PDF

A mutant of Bacillus stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase, Ser148----Ala, was produced by oligonucleotide-directed mutagenesis. The study of the catalytic properties of this mutant has shown that this mutation significantly affects the Michaelis constant of inorganic phosphate and to a lesser extent that of 1,3-diphosphoglycerate and D-glyceraldehyde-3-phosphate. This result is consistent with model-building studies which show that, for the phosphorylation step of catalysis, inorganic phosphate must bind to the anion recognition site designated Pi with the C(3) phosphate of the acyl-enzyme intermediate in the alternative anion site Ps.

View Article and Find Full Text PDF