Publications by authors named "Won-Tae Park"

'Ideal' transparent p-type semiconductors are required for the integration of high-performance thin-film transistors (TFTs) and circuits. Although CuI has recently attracted attention owing to its excellent opto-electrical properties, solution processability, and low-temperature synthesis, the uncontrolled copper vacancy generation and subsequent excessive hole doping hinder its use as a semiconductor material in TFT devices. In this study, we propose a doping approach through soft chemical solution process and transparent p-type Zn-doped CuI semiconductor for high-performance TFTs and circuits.

View Article and Find Full Text PDF

Low- k amorphous fluorinated polymers such as poly(perfluoroalkenylvinyl ether) (CYTOP) have widely been used as gate dielectrics for organic field-effect transistors (OFETs) because of their strong hydrophobicity to prevent the penetration of moisture and other contaminants and their perfect solvent orthogonality with organic semiconductors. Here, we report a new functionality of the fluorinated low- k polymer dielectrics, which is spontaneous p doping at the dielectric-semiconductor interface in OFETs. This functionality makes the ambipolar charge transport a unipolar p type.

View Article and Find Full Text PDF

Numerous previous studies have focused on the notion that semiconducting polymers with an edge-on dominant orientation are advantageous for horizontal charge transport, whereas polymers with a face-on dominant orientation are advantageous for vertical charge transport, since the crystallite orientation determines the π-π stacking direction, which in turn affects the interchain charge transport direction. Here, we report that the crystallite orientation is dependent on the intermolecular interactions in the semiconducting polymer. In this study, we control the intermolecular interactions in a donor-acceptor (D-A) semiconducting polymer via side chain engineering.

View Article and Find Full Text PDF

Here, room-temperature solution-processed inorganic p-type copper iodide (CuI) thin-film transistors (TFTs) are reported for the first time. The spin-coated 5 nm thick CuI film has average hole mobility (µ ) of 0.44 cm V s and on/off current ratio of 5 × 10 .

View Article and Find Full Text PDF

We report a newly synthesized donor (D)-acceptor (A)type semiconducting copolymer, consisting of thiophene as an electron-donating unit and thiazole as an electron-accepting unit (PQTBTz-TT-C8) for the active layer of the organic field-effect transistors (OFETs). Specifically, this study investigates the structure and electrical property relationships of PQTBTz-TT-C8 with comprehensive analyses on the charge-transporting properties corresponding to the spin rate of the spin coater during the formation of the PQTBTz-TT-C8 film. The crystallinity of PQTBTz-TT-C8 films is examined with grazing incidence X-ray diffraction.

View Article and Find Full Text PDF

We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor.

View Article and Find Full Text PDF
Article Synopsis
  • Charge transport in carbon nanotube network transistors is affected by the type of gate dielectric used, which influences device performance.
  • This study compares three polymer insulators with different dielectric constants (CYTOP, PMMA, and P(VDF-TrFE-CTFE)) in semiconducting carbon nanotube transistors, revealing that the low-permittivity dielectric (CYTOP) produces the best charge mobility.
  • The findings show that lower-k dielectrics result in better charge transport efficiency and operational stability, while high-k dielectrics suffer due to energetic disorder from randomly oriented dipoles, leading to poorer device performance.
View Article and Find Full Text PDF

A highly conductive, air stable and scalable poly(3,4-ethylenedioxythiophene) (PEDOT): poly(4-styrenesulfonate) (PEDOT:PSS) are prepared by using mass production ultrafiltration. By effectively removing excess PSS and various reaction impurities using repeated 100 nm pore membrane filtration, purified PEDOT:PSS exhibit conductivity as high as 2000 S cm .

View Article and Find Full Text PDF

The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination.

View Article and Find Full Text PDF

The threshold voltage and onset voltage for p-channel and n-channel regimes of solution-processed ambipolar organic transistors with top-gate/bottom-contact (TG/BC) geometry were effectively tuned by gate buffer layers in between the gate electrode and the dielectric. The work function of a pristine Al gate electrode (-4.1 eV) was modified by cesium carbonate and vanadium oxide to -2.

View Article and Find Full Text PDF

Charge carriers typically move faster in crystalline regions than in amorphous regions in conjugated polymers because polymer chains adopt a regular arrangement resulting in a high degree of π-π stacking in crystalline regions. In contrast, the random polymer chain orientation in amorphous regions hinders connectivity between conjugated backbones; thus, it hinders charge carrier delocalization. Various studies have attempted to enhance charge carrier transport by increasing crystallinity.

View Article and Find Full Text PDF

A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors.

View Article and Find Full Text PDF

The universal role of high-k fluorinated dielectrics in assisting the carrier transport in transistors for a broad range of printable semiconductors is explored. These results present general rules for how to design dielectric materials and achieve devices with a high carrier concentration, low disorder, reliable operation, and robust properties.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed ultrathin and dense metal oxide gate dielectric layers using a straightforward method to print AlOx and HfOx sol-gel precursors.
  • The resulting large-area printed indium gallium zinc oxide (IGZO) thin-film transistor arrays show impressive mobilities over 5 cm² V⁻¹ s⁻¹ and low gate leakage currents of 10⁻⁹ A cm⁻².
  • These transistors operate efficiently at a low voltage of just 2 V, showcasing the effectiveness of the continuous bar-coating technique for fabrication.
View Article and Find Full Text PDF
Article Synopsis
  • Electret and organic floating-gate memories show promise as next-gen flash storage, but face challenges with bit reliability and high write loads.
  • A new architecture combines electrical characterization with a polymer electret and metal nanoparticles to enhance multi-level storage capability.
  • Utilizing innovative layering techniques and materials like P(VDF-TrFE) leads to improved performance characteristics such as lower power consumption and higher stability compared to traditional organic memory options.
View Article and Find Full Text PDF

Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance.

View Article and Find Full Text PDF

Efficient charge injection is critical for flexible organic electronic devices such as organic light-emitting diodes (OLEDs) and field-effect transistors (OFETs). Here, we investigated conjugated polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) as solution-processable charge-injection layers in ambipolar organic field-effect transistors with poly(thienylenevinylene-co-phthalimide)s. The interlayers were prepared using poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) or poly(9,9-dioctylfluorene) (PFO) to wrap s-SWNTs.

View Article and Find Full Text PDF

High-mobility and low-voltage-operated organic field-effect transistors (OFETs) are demonstrated by the design of a new fluorinated benzothiadiazole-based conjugated polymer with fluorinated high-k polymer dielectrics. A record-breaking high hole mobility of 9.0 cm(2) V(-1) s(-1) for benzothiadiazole-based semiconducting polymers is achieved by the excellent planarity of the semiconducting polymer.

View Article and Find Full Text PDF

Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices.

View Article and Find Full Text PDF

We report on a technique using mixed self-assembled monolayers (SAMs) to finely regulate ambipolar charge injection in polymer organic field-effect transistors. Differing from the other works that employ single SAM specifically for efficient charge injection in p-type and n-type transistors, we blend two different SAMs of alkyl- and perfluoroalkyl thiols at different ratios and apply them to ambipolar OFETs and inverter. Thanks to the utilization of ambipolar semiconductor and one SAM mixture, the device and circuit fabrications are facile with only one step for semiconductor deposition and another for SAM treatment.

View Article and Find Full Text PDF

In order to determine the effects of actual 'chalcogen atoms' on semiconducting properties for application in a variety of optoelectronic devices, a class of donor (D)-acceptor (A) polymer semiconductors, namely PBDP-Fu, PBDP-Th, and PBDP-Se, containing the recently formulated benzodipyrrolidone (BDP) accepting unit and furan (Fu), thiophene (Th), or selenophene (Se) as a donating unit has been synthesized, characterized, and used in an active layer of organic field-effect transistors (OFETs). With the LUMO levels being comparatively consistent for all three polymers (-3.58 to -3.

View Article and Find Full Text PDF

A π-conjugated polyazine containing diketopyrrolopyrrole (DPP) moiety, PDBTAZ, is synthesized through a simple condensation polymerization. PDBTAZ is found to be a high-performance ambipolar semiconductor in organic thin film transistors (OTFTs), showing an electron mobility of up to 0.41 cm(2) V(-1) s(-1) and a hole mobility of up to 0.

View Article and Find Full Text PDF