Publications by authors named "Won-Min Song"

Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures, and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing (snRNA-seq) and analyzed 50,708 high quality nuclei targeting the diencephalon, including the subthalamic nucleus and adjacent structures, from human post-mortem PSP brains with varying degrees of pathology compared to controls.

View Article and Find Full Text PDF

Protein abundance correlates only moderately with mRNA levels, and are modulated post-transcriptionally by a network of regulators including ribosomes, RNA-binding proteins (RBPs), and the proteasome. Here, we identified ster rotein abundance egulators (MaPRs) across ten cancer types by devising a new computational pipeline that jointly analyzed transcriptomes and proteomes from 1,305 tumor samples. We identified 232 to 1,394 MaPRs per cancer type, mediating up to 79% of post-transcriptional regulatory networks.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) play a significant but not fully understood role in the regulation of inflammation, particularly in inflammatory bowel disease (IBD).
  • Researchers used RNA-sequencing data from IBD patients to identify gene modules where lncRNAs are coexpressed with protein-coding genes, some of which correlate with disease severity and immune responses.
  • The study highlighted a specific lncRNA, IRF1-AS1, linked to a response in inflammatory cytokines and identified other lncRNAs that could affect inflammation in response to stimuli, suggesting new pathways for IBD treatment.
View Article and Find Full Text PDF

Global proteomic data generated by advanced mass spectrometry (MS) technologies can help bridge the gap between genome/transcriptome and functions and hold great potential in elucidating unbiased functional models of pro-tumorigenic pathways. To this end, we collected the high-throughput, whole-genome MS data and conducted integrative proteomic network analyses of 687 cases across 7 cancer types including breast carcinoma (115 tumor samples; 10,438 genes), clear cell renal carcinoma (100 tumor samples; 9,910 genes), colorectal cancer (91 tumor samples; 7,362 genes), hepatocellular carcinoma (101 tumor samples; 6,478 genes), lung adenocarcinoma (104 tumor samples; 10,967 genes), stomach adenocarcinoma (80 tumor samples; 9,268 genes), and uterine corpus endometrial carcinoma UCEC (96 tumor samples; 10,768 genes). Through the protein co-expression network analysis, we identified co-expressed protein modules enriched for differentially expressed proteins in tumor as disease-associated pathways.

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls.

View Article and Find Full Text PDF

Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses.

View Article and Find Full Text PDF

Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses.

View Article and Find Full Text PDF

Unlabelled: Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs.

View Article and Find Full Text PDF

Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. However, identification of the genes that are critical for tumorgenicity still remains a challenge.

View Article and Find Full Text PDF

Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has affected tens of millions of individuals and caused hundreds of thousands of deaths worldwide. Here, we present a comprehensive, multiscale network analysis of the transcriptional response to the virus. In particular, we focused on key regulators, cell receptors, and host processes that were hijacked by the virus for its advantage.

View Article and Find Full Text PDF

In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies show abnormal methylomic changes are linked to Alzheimer's disease (AD), but there's limited research on how these changes affect molecular networks.
  • Researchers analyzed DNA methylation in the parahippocampal gyrus from 201 brains, identifying 270 differentially methylated regions (DMRs) related to AD and assessing their effects on gene and protein interactions.
  • The findings highlight the significant influence of DNA methylation on AD-related gene and protein networks, suggesting potential upstream epigenetic regulators and emphasizing the importance of multi-omics data integration for understanding AD.
View Article and Find Full Text PDF

While multiple transcription factors (TFs) have been recognized to drive epithelial-mesenchymal transition (EMT) in cancer, their interdependence and context-dependent functions are poorly understood. In this study, we show that FOXQ1 and SNAI1 act as independent TFs within the EMT program with a shared ability to upregulate common EMT TFs without reciprocally impacting the expression of one another. Despite this independence, human mammary epithelial cells (HMLE) with ectopic expression of either FOXQ1 or SNAI1 share a common gene set that is enriched for a DDR2 coexpression signature.

View Article and Find Full Text PDF

Objective: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments.

Design: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis.

View Article and Find Full Text PDF

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.

View Article and Find Full Text PDF

Background: Microglia, the resident immune cells of the brain, play a critical role in numerous diseases, but are a minority cell type and difficult to genetically manipulate in vivo with viral vectors and other approaches. Primary cultures allow a more controlled setting to investigate these cells, but morphological and transcriptional changes upon removal from their normal brain environment raise many caveats from in vitro studies.

Methods: To investigate whether cultured microglia recapitulate in vivo microglial signatures, we used single-cell RNA sequencing (scRNAseq) to compare microglia freshly isolated from the brain to primary microglial cultures.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive.

View Article and Find Full Text PDF

Background: Cellular senescence is a complex stress response that impacts cellular function and organismal health. Multiple developmental and environmental factors, such as intrinsic cellular cues, radiation, oxidative stress, oncogenes, and protein accumulation, activate genes and pathways that can lead to senescence. Enormous efforts have been made to identify and characterize senescence genes (SnGs) in stress and disease systems.

View Article and Find Full Text PDF

Background & Aims: There is a major unmet need to assess the prognostic impact of antifibrotics in clinical trials because of the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression.

Methods: A fibrosis progression signature (FPS) was defined to predict fibrosis progression within 5 years in patients with hepatitis C virus and nonalcoholic fatty liver disease (NAFLD) with no to minimal fibrosis at baseline (n = 421) and was validated in an independent NAFLD cohort (n = 78).

View Article and Find Full Text PDF

Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic liver disease and hepatocellular carcinoma (HCC) pose significant health risks with few effective treatments, largely due to the absence of suitable experimental models for research.
  • The study introduces a human liver cell-based model that accurately reflects a clinical prognostic liver signature (PLS), which helps predict the progression of liver disease to HCC.
  • By validating the PLS with animal models and patient samples, researchers identify nizatidine, an H2 receptor blocker, as a promising treatment for advanced liver disease and as a preventive measure against HCC, revealing new therapeutic targets through advanced analysis techniques.
View Article and Find Full Text PDF

Background: Inflammatory bowel disease (IBD) is a complex disease with variable presentation, progression, and response to therapies. Current disease classification is based on subjective clinical phenotypes. The peripheral blood immunophenome can reflect local inflammation, and thus we measured 39 circulating immune cell types in a large cohort of IBD and control subjects and performed immunotype:phenotype associations.

View Article and Find Full Text PDF

Melanoma is the most lethal skin malignancy, driven by genetic and epigenetic alterations in the complex tumour microenvironment. While large-scale molecular profiling of melanoma has identified molecular signatures associated with melanoma progression, comprehensive systems-level modeling remains elusive. This study builds up predictive gene network models of molecular alterations in primary melanoma by integrating large-scale bulk-based multi-omic and single-cell transcriptomic data.

View Article and Find Full Text PDF