To overcome the climate crisis, various greenhouse gas (GHG) mitigation strategies have been developed, and every effort has been made to achieve carbon neutrality. Given that petroleum-based industries and the transportation sector emit enormous amounts of GHGs, the product spectra of biorefineries should be expanded beyond drop-in biofuels to include more value-added products. This study aimed to construct a CO mitigation system.
View Article and Find Full Text PDFThe aim of this study was to increase the bioconversion efficiency (lipid accumulation) of black soldier fly larvae while simultaneously increasing biodiesel production through a feed-shifting strategy. Feeding with low-lipid feed promoted an increase in larval weight, while high-lipid feed resulted in greater lipid accumulation. Based on this result, a feed-shifting strategy was introduced, which consisted of two stages: first, increasing larval body weight using low-lipid feed, followed by lipid induction for biodiesel production using high-lipid feed.
View Article and Find Full Text PDFFood waste (FW) comprises carbohydrates, proteins, lipids, and water, posing technical challenges for effective treatment and valorisation. This study addresses these challenges by using black soldier fly larvae (BSFL) as a bioconversion medium to transform FW into biodiesel (BD). BSFL predominantly consumed the carbohydrates and proteins in FW (81 wt%), while showing a lower preference for lipids (<50 wt% consumed).
View Article and Find Full Text PDFThis study aims to propose a biological system that allows for direct utilization of flue gas for carbon dioxide capture and utilization by microalgae. The strain Chlorella sp. ABC-001 is employed for its high growth rate as well as lipid and carbohydrate content.
View Article and Find Full Text PDFMicroalgae accumulate abundant lipids and are a promising source for biodiesel. However, carbohydrates account for 40% of microalgal biomass, an important consideration when using them for the economically feasible production of biodiesel. In this study, different acid hydrolysis and post-treatment processing of Chlorella sp.
View Article and Find Full Text PDFThe use of microalgal biomass as feedstock for biofuels has been discussed for decades as it provides a sustainable approach to producing fuels for the future. Nonetheless, its feasibility has not been established yet and various aspects of biomass applications such as CO biofixation should also be explored. Therefore, in this study, the CO biofixation and lipid/carbohydrate production potential of sp.
View Article and Find Full Text PDFSugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101.
View Article and Find Full Text PDFThe heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation.
View Article and Find Full Text PDFJ Microbiol Biotechnol
January 2020
spp. are green algae that are found across wide-ranging habitats from deserts to arctic regions, with various strains having adapted to survive under diverse environmental conditions. In this study, two novel strains (ABC-002, ABC-008) were isolated from a freshwater lake in South Korea during the winter season and examined for possible use in the biofuel production process.
View Article and Find Full Text PDFEcological studies of microalgae have revealed their potential to co-exist in the natural environment. It provides an evidence of the symbiotic relationship of microalgae with other microorganisms. The symbiosis potential of microalgae is inherited with distinct advantages, providing a venue for their scale-up applications.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
April 2015
Saccharomyces cerevisiae strains tolerant to salt stress are important for the production of single-cell protein using kimchi waste brine. In this study, two strains (TN-1 and TN-2) tolerant of up to 10 % (w/v) NaCl were isolated by screening a transposon-mediated mutant library. The determination of transposon insertion sites and Northern blot analysis identified two genes, MDJ1 and VPS74, and revealed disruptions of the open reading frame of both genes, indicating that salt tolerance can be conferred.
View Article and Find Full Text PDFMass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel, but the high cost of nutrients is a major limitation. In this study, orange peel extract (OPE) was used as an inorganic and organic nutrient source for the cultivation of Chlorella vulgaris OW-01. Chemical composition analysis of the OPE indicated that it contains sufficient nutrients for mixotrophic cultivation of C.
View Article and Find Full Text PDFCultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production.
View Article and Find Full Text PDFHigh-cost downstream process is a major bottleneck for producing microalgal biodiesel at reasonable price. Conventional lipid extraction process necessitates biomass drying process, which requires substantial amount of energy. In this regard, lipid extraction from wet biomass must be an attractive solution.
View Article and Find Full Text PDFAs energy and environment have become urgent issues, there has been increasing needs to develop alternative energy source, such as microalgal bio-fuel. In this study, we investigated the growth and lipid contents of microalgae Nannochloris oculata under various environmental conditions for biodiesel production. Our results indicated that biomass productivities of N.
View Article and Find Full Text PDFWe describe a facile and simple one-pot synthesis of water-soluble amino-organoclay under ambient conditions. The clay was used to successfully remove environmentally toxic anionic metals, such as arsenate, chromate, and ferricyanide. The electrostatic interactions between the anionic metals and the protonated amino (ammonium) groups of the amino-organoclay resulted in rapid precipitation, within 3 min, with a high removal capacity.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2002
In response to ambient hypertonicity, TonEBP (tonicity-responsive enhancer binding protein) stimulates certain genes including those encoding cytokines, transporters for organic solutes, and a molecular chaperone. TonEBP is regulated in a bidirectional manner, upregulated by an increase in ambient tonicity while downregulated by a decrease. To investigate the role of intracellular ionic strength in the activity of TonEBP, we subjected Madin-Darby canine kidney cells to a variety of conditions.
View Article and Find Full Text PDFWhile hyperosmolality of the kidney medulla is essential for urinary concentration, it imposes a great deal of stress. Cells in the renal medulla adapt to the stress of hypertonicity (hyperosmotic salt) by accumulating organic osmolytes. Tonicity-responsive enhancer (TonE) binding protein (TonEBP) (or NFAT5) stimulates transcription of transporters and a synthetic enzyme for the cellular accumulation of organic osmolytes.
View Article and Find Full Text PDF