Publications by authors named "Won-Ki Pang"

Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks.

View Article and Find Full Text PDF

This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs).

View Article and Find Full Text PDF

Infertility affects a significant percentage of couples worldwide, and male factors contribute significantly to this problem. Traditional assessments of male fertility rely primarily on parameters such as sperm motility, morphology, viability, and concentration. However, these metrics often do not provide a comprehensive understanding of sperm function, which is critical not only for fertilization but also for successful embryo development.

View Article and Find Full Text PDF

Study Question: How does bisphenol-A (BPA) influence male fertility, and which mechanisms are activated following BPA exposure?

Summary Answer: BPA exposure causes hormonal disruption and alters mitochondrial dynamics and activity, ultimately leading to decreased male fertility.

What Is Known Already: As public health concerns following BPA exposure are rising globally, there is a need to understand the exact mechanisms of BPA on various diseases. BPA exposure causes hormonal imbalances and affects male fertility by binding the estrogen receptors (ERs), but the mechanism of how it mediates the hormonal dysregulation is yet to be studied.

View Article and Find Full Text PDF

Vigorous activation of mitochondria in spermatozoa during capacitation induces the biological and morphological changes of spermatozoa to acquire fertilizing ability. To in-depth understand the dynamic roles of mitochondrial and male fertility, this study was to identify how the mitochondrial proteins are changed during sperm capacitation and regulate male fertility using boar spermatozoa. The mitochondrial proteins were differentially changed during sperm capacitation according to fertility status, i.

View Article and Find Full Text PDF

The growing global deterioration in several aspects of human health has been partly attributed to hazardous effects of endocrine-disrupting chemicals (EDCs) exposure. Therefore, experts and government regulatory agencies have consistently advocated for studies on the combined effects of EDCs that model human exposure to multiple environmental chemicals in real life. Here, we investigated how low concentrations of bisphenol A (BPA), and phthalates compounds affect the Sertoli cell glucose uptake/lactate production in the testis and male fertility.

View Article and Find Full Text PDF

Background: Comparative and comprehensive omics studies have recently been conducted to provide a comprehensive understanding of the biological mechanisms underlying infertility. However, because these huge omics datasets often contain irrelevant information, editing strategies for summarizing and filtering the data are necessary prerequisite steps for identifying biomarkers of male fertility. Here, we attempted to integrate omics data from spermatozoa with normal and below-normal fertility from boars and bulls, including transcriptomic, proteomic, and metabolomic data.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an endocrine-disrupting chemical widely distributed in the environment. Its exposure has been linked to male infertility in animals and humans due to its ability to induce epigenetic modification. Despite extensive research confirming the impact of BPA on epigenetic regulation, fundamental concerns about how BPA causes epigenetic changes and the underlying mechanism of BPA on the male reproductive system remain unresolved.

View Article and Find Full Text PDF

Background: Male infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction.

View Article and Find Full Text PDF

Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders.

View Article and Find Full Text PDF

The global epidemic of metabolic syndrome has been partially linked to ubiquitous exposure to endocrine-disrupting chemicals (EDCs). Although the impacts of exposure to single EDCs have been thoroughly studied, the consequences of simultaneous uncontrolled exposure to multiple EDCs require further investigations. Therefore, in this study, we evaluated how exposure to mixtures containing bisphenol A and seven phthalates impacts liver functions and metabolic homeostasis.

View Article and Find Full Text PDF

Background: Sperm quality evaluation is the logical first step in increasing field fertility. Spermatozoa contain cytoplasmic organelles and biomolecules known as sperm-intrinsic factors, which play key roles in sperm maturation, sperm-oocyte fusion, and embryo development. In particular, sperm membrane proteins [e.

View Article and Find Full Text PDF

Purpose: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This study investigated whether sequential changes in fertility-related protein expression including that of enolase 1 (ENO1), ubiquinol-cytochrome c reductase core protein 1 and 2 (UQCRC1 and UQCRC2), and voltage-dependent anion channel 2 (VDAC2) in spermatozoa during epididymal maturation are related to bovine sperm motility.

View Article and Find Full Text PDF

Testicular junctions are pivotal to male fertility and regulated by constituent proteins. Increasing evidence suggests that environmental chemicals, including bisphenol A (BPA), may impact these proteins, but whether the impacts persist for generations is not yet known. Here, we investigate the effect of BPA (a ubiquitous endocrine-disrupting chemical) on testis and sperm functions and whether the effects are transferred to subsequent generations.

View Article and Find Full Text PDF

Background: Sex preselection is a desired goal of the animal industry to improve production efficiency, depending on industry demand. In the porcine industry, there is a general preference for pork from female and surgically castrated male pigs. Therefore, the birth of more females than males in a litter leads to economic benefits and improved animal welfare in the pig production industry.

View Article and Find Full Text PDF

Growing evidence suggests that developmental exposure to bisphenol A (BPA)-a synthetic endocrine disruptor-causes atypical reproductive phenotypes that may persist for generations. However, the precise mechanism(s) by which BPA causes these adverse consequences is unclear. Here, pregnant female mice were orally exposed to 50 μg, 5 mg, and 50 mg BPA/kg body weight (bw)/day from 7 to 14 days of gestation.

View Article and Find Full Text PDF

Phthalates are common environmental pollutants that are presumed to negatively impact male fertility including animals and humans. Particularly, these potential xenoestrogens may alter male fertility by binding to specific sperm receptors. Although several studies have characterized the toxic effects of single phthalates, epidemiological studies indicate that humans are typically exposed to phthalate mixtures.

View Article and Find Full Text PDF

In this study, we tried to optimize the porcine semen extender conditions to maximize the differences between live X chromosome-bearing (X) spermatozoa and to Y chromosome-bearing (Y) spermatozoa without a decline in the fertility rate at different pH conditions during storage. We observed the viability of X and Y boar spermatozoa in acidic (pH 6.2), original (pH 7.

View Article and Find Full Text PDF

Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis.

View Article and Find Full Text PDF

Recent studies have demonstrated the significance of sperm RNA function as a transporter of important information directing the course of life. To determine the message contained in sperm RNA, it is necessary to optimize transcriptomic research tools. The current study was performed to optimize the processing of sperm RNA from sample storage to quantitative real-time PCR and assess the corresponding method with to evaluate male fertility and its representative markers, equatorin (EQTN) and peroxiredoxin (PRDX).

View Article and Find Full Text PDF

Study Question: How does paternal exposure to bisphenol A (BPA) affect the fertility of male offspring in mice in future generations?

Summary Answer: Paternal exposure to BPA adversely affects spermatogenesis, several important sperm functions and DNA methylation patterns in spermatozoa, which have both multigenerational (in F0 and F1) and partial transgenerational (mainly noticed in F2, but F3) impacts on the fertility of the offspring.

What Is Known Already: BPA, a synthetic endocrine disruptor, is used extensively to manufacture polycarbonate plastics and epoxy resins. Growing evidence suggests that exposure to BPA during the developmental stages results in atypical reproductive phenotypes that could persist for generations to come.

View Article and Find Full Text PDF

Although there are numerous studies on bisphenol A (BPA) on the testis and spermatozoa, the effect of BPA on the physiological link between the testis and maturation of spermatozoa has not been studied. To provide an optimal environment (acidic pH) for sperm maturation in the epididymis, clear cells secrete protons and principal cells reabsorb bicarbonate and the secreted proton. Because of its crucial role in sperm maturation and fertility, functional changes in the epididymis following BPA exposure must be considered to fully understand the mechanisms of BPA on male fertility.

View Article and Find Full Text PDF

Sperm cryopreservation is an important tool for storing genetic traits and assisted reproduction techniques. Several studies have developed semen cryopreservation protocols. However, the sperm proteome is different between ejaculated and epididymal spermatozoa and little is known about cryopreservation effects on epididymal spermatozoa.

View Article and Find Full Text PDF

Artificial insemination is the general method of breeding for genetic improvement in offspring. However, almost half of the insemination cases fail to achieve full-term pregnancy, due to male infertility or subfertility. To maximize the success of insemination, accurate semen quality testing is required prior to insemination.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf9n33b44mpo2ucm262s1dfvvj0h46068): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once