This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium-tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O ambient, exhibited a high mobility of 26.
View Article and Find Full Text PDFElectrical double-layer (EDL) synaptic transistors based on organic materials exhibit low thermal and chemical stability and are thus incompatible with complementary metal oxide semiconductor (CMOS) processes involving high-temperature operations. This paper proposes organic-inorganic hybrid synaptic transistors using methyl silsesquioxane (MSQ) as the electrolyte. MSQ, derived from the combination of inorganic silsesquioxanes and the organic methyl (-CH) group, exhibits exceptional thermal and chemical stability, thus ensuring compatibility with CMOS processes.
View Article and Find Full Text PDFThis study presents a novel pH sensor platform utilizing charge-trap-flash-type metal oxide semiconductor field-effect transistors (CTF-type MOSFETs) for enhanced sensitivity and self-amplification. Traditional ion-sensitive field-effect transistors (ISFETs) face challenges in commercialization due to low sensitivity at room temperature, known as the Nernst limit. To overcome this limitation, we explore resistive coupling effects and CTF-type MOSFETs, allowing for flexible adjustment of the amplification ratio.
View Article and Find Full Text PDFThis study proposes a phosphosilicate glass (PSG)-based electrolyte gate synaptic transistor with varying phosphorus (P) concentrations. A metal oxide semiconductor capacitor structure device was employed to measure the frequency-dependent (C-) capacitance curve, demonstrating that the PSG electric double-layer capacitance increased at 10 Hz with rising P concentration. Fourier transform infrared spectroscopy spectra analysis facilitated a theoretical understanding of the C- curve results, examining peak differences in the P-OH structure based on P concentration.
View Article and Find Full Text PDFIn this study, a transparent and flexible synaptic transistor was fabricated based on a random-network nanowire (NW) channel made of indium gallium zinc oxide. This device employs a biocompatible chitosan-based hydrogel as an electrolytic gate dielectric. The NW structure, with its high surface-to-volume ratio, facilitated a more effective modulation of the channel conductance induced by protonic-ion polarization.
View Article and Find Full Text PDFIn this study, optoelectronic synaptic transistors based on indium-gallium-zinc oxide (IGZO) with a casein electrolyte-based electric double layer (EDL) were examined. The casein electrolyte played a crucial role in modulating synaptic plasticity through an internal proton-induced EDL effect. Thus, important synaptic behaviors, such as excitatory post-synaptic current, paired-pulse facilitation, and spike rate-dependent and spike number-dependent plasticity, were successfully implemented by utilizing the persistent photoconductivity effect of the IGZO channel stimulated by light.
View Article and Find Full Text PDFThis study aimed to propose a silicon-on-insulator (SOI)-based charge-trapping synaptic transistor with engineered tunnel barriers using high- dielectrics for artificial synapse electronics capable of operating at high temperatures. The transistor employed sequential electron trapping and de-trapping in the charge storage medium, facilitating gradual modulation of the silicon channel conductance. The engineered tunnel barrier structure (SiO/SiN/SiO), coupled with the high- charge-trapping layer of HfO and high-k blocking layer of AlO, enabled reliable long-term potentiation/depression behaviors within a short gate stimulus time (100 μs), even under elevated temperatures (75 and 125 °C).
View Article and Find Full Text PDFIn this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range.
View Article and Find Full Text PDFCalcium ions (Ca) are abundantly present in the human body; they perform essential roles in various biological functions. In this study, we propose a highly sensitive and selective biosensor platform for Ca detection, which comprises a dual-gate (DG) field-effect transistor (FET) with a high- engineered gate dielectric, silicon nanowire (SiNW) random network channel, and Ca-selective extended gate. The SiNW channel device, which was fabricated via the template transfer method, exhibits superior Ca sensing characteristics compared to conventional film channel devices.
View Article and Find Full Text PDFThis study proposes a high-performance organic-inorganic hybrid memristor for the development of neuromorphic devices in the memristor-based artificial synapse. The memristor consists of a solid polymer electrolyte (SPE) chitosan layer and a titanium oxide (TiO) layer grown with a low-thermal-budget, microwave-assisted oxidation. The fabricated Ti/SPE-chitosan/TiO/Pt-structured memristor exhibited steady bipolar resistive switching (BRS) characteristics and demonstrated excellent endurance in 100-cycle repetition tests.
View Article and Find Full Text PDFBiosensors (Basel)
May 2023
Dopamine is a catecholamine neurotransmitter that plays a significant role in the human central nervous system, even at extremely low concentrations. Several studies have focused on rapid and accurate detection of dopamine levels using field-effect transistor (FET)-based sensors. However, conventional approaches have poor dopamine sensitivity with values <11 mV/log [DA].
View Article and Find Full Text PDFThe potassium (K) ion is an essential mineral for balancing body fluids and electrolytes in biological systems and regulating bodily function. It is associated with various disorders. Given that it exists at a low concentration in the human body and should be maintained at a precisely stable level, the development of highly efficient potassium-selective sensors is attracting considerable interest in the healthcare field.
View Article and Find Full Text PDFThis study proposed a biocompatible polymeric organic material-based synaptic transistor gated with a biopolymer electrolyte. A polyvinyl alcohol (PVA):chitosan (CS) biopolymer blended electrolyte with high ionic conductivity was used as an electrical double layer (EDL). It served as a gate insulator with a key function as an artificial synaptic transistor.
View Article and Find Full Text PDFIn this study, we fabricated an electric double-layer transistor (EDLT), a synaptic device, by preparing a casein biopolymer electrolyte solution using an efficient microwave-assisted synthesis to replace the conventional heating (heat stirrer) synthesis. Microwave irradiation (MWI) is more efficient in transferring energy to materials than heat stirrer, which significantly reduces the preparation time for casein electrolytes. The capacitance-frequency characteristics of metal-insulator-metal configurations applying the casein electrolyte prepared through MWI or a heat stirrer were measured.
View Article and Find Full Text PDFIn this study, we propose the use of artificial synaptic transistors with coplanar-gate structures fabricated on paper substrates comprising biocompatible and low-cost potato-starch electrolyte and indium-gallium-zinc oxide (IGZO) channels. The electrical double layer (EDL) gating effect of potato-starch electrolytes enabled the emulation of biological synaptic plasticity. Frequency dependence measurements of capacitance using a metal-insulator-metal capacitor configuration showed a 1.
View Article and Find Full Text PDFIn this study, we propose tunable pH sensors based on the electric-double-layer transistor (EDLT) with time-dependent sensitivity characteristics. The EDLT is able to modulate the drain current by using the mobile ions inside the electrolytic gate dielectric. This property allows the implementation of a device with sensitivity characteristics that are simply adjusted according to the measurement time.
View Article and Find Full Text PDFWe propose an ambipolar chitosan synaptic transistor that effectively responds to binary neuroplasticity. We fabricated the synaptic transistors by applying a chitosan electric double layer (EDL) to the gate insulator of the excimer laser annealed polycrystalline silicon (poly-Si) thin-film transistor (TFT) with Ni-silicide (NiSi) Schottky-barrier source/drain (S/D) junction. The undoped poly-Si channel and the NiSi S/D contact allowed conduction by electrons and holes, resulting in artificial synaptic behavior in both p-type and n-type regions.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2022
In this study, a high-performance bio-organic memristor with a crossbar array structure using milk as a resistive switching layer (RSL) is proposed. To ensure compatibility with the complementary metal oxide semiconductor process of milk RSL, a high- TaO layer was deposited as a capping layer; this layer enables high-density, integration-capable, photolithography processes. The fabricated crossbar array memristors contain milk-TaO hybrid membranes, and they exhibit bipolar resistance switching behavior and uniform resistance distribution across hundreds of repeated test cycles.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2022
In this study, we proposed a synaptic transistor using an emerging biocompatible organic material, namely, the casein electrolyte as an electric-double-layer (EDL) in the transistor. The frequency-dependent capacitance of the indium-tin-oxide (ITO)/casein electrolyte-based EDL/ITO capacitor was assessed. As a result, the casein electrolyte was identified to exhibit a large capacitance of ~1.
View Article and Find Full Text PDFPolymers (Basel)
March 2022
With the growing demand for bio- and eco-friendly artificial synapses, we propose a novel synaptic transistor using natural bovine-milk-based biocompatible polymers as an electrical double layer (EDL). A method for forming an EDL membrane, which plays a key role in synaptic devices, was established using a milk-based biocompatible polymer. The frequency-dependent capacitance of a milk-based polymer-EDL was evaluated by constructing an EDL capacitor (EDLC) with indium-tin-oxide (ITO) electrode.
View Article and Find Full Text PDFIn this study, the efficient fabrication of nickel silicide (NiSi) Schottky barrier thin-film transistors (SB-TFTs) via microwave annealing (MWA) technology is proposed, and complementary metal-oxide-semiconductor (CMOS) inverters are implemented in a simplified process using ambipolar transistor properties. To validate the efficacy of the NiSi formation process by MWA, NiSi is also prepared via the conventional rapid thermal annealing (RTA) process. The Rs of the MWA NiSi decreases with increasing microwave power, and becomes saturated at 600 W, thus showing lower resistance than the 500 °C RTA NiSi.
View Article and Find Full Text PDFA random network of indium-gallium-zinc oxide (IGZO) nanowires was fabricated by electrospun-polyvinylpyrrolidone (PVP)-nanofiber template transfer. Conventional electrospun nanofibers have been extensively studied owing to their flexibility and inherently high surface-to-volume ratio. However, solution-based IGZO nanofibers have critical issues such as poor electrical properties, reliability, and uniformity.
View Article and Find Full Text PDFIn this study, we propose the fabrication of sol-gel composite-based flexible and transparent synaptic transistors on polyimide (PI) substrates. Because a low thermal budget process is essential for the implementation of high-performance synaptic transistors on flexible PI substrates, microwave annealing (MWA) as a heat treatment process suitable for thermally vulnerable substrates was employed and compared to conventional thermal annealing (CTA). In addition, a solution-processed wide-bandgap amorphous In-Ga-Zn (2:1:1) oxide (-IGZO) channel, an organic polymer chitosan electrolyte-based electric double layer (EDL), and a high- TaO thin-film dielectric layer were applied to achieve high flexibility and transparency.
View Article and Find Full Text PDFMicromachines (Basel)
October 2021
In this study, we propose high-performance chitosan-based flexible memristors with embedded single-walled carbon nanotubes (SWCNTs) for neuromorphic electronics. These flexible transparent memristors were applied to a polyethylene naphthalate (PEN) substrate using low-temperature solution processing. The chitosan-based flexible memristors have a bipolar resistive switching (BRS) behavior due to the cation-based electrochemical reaction between a polymeric chitosan electrolyte and mobile ions.
View Article and Find Full Text PDF