Background: Titanium (Ti-6Al-4 V) is used for fixation in LeFort I osteotomy, a procedure for treating midface deformities. This study assessed the biomechanical stabilities of two Mg alloys (WE43 and ZK60) as biodegradable alternatives and compared them against Ti using finite element analyses. The LeFort I osteotomy procedure was simulated, and various plate and screw configurations were tested.
View Article and Find Full Text PDFIn reconstructive surgery following partial mandibulectomy, the biomechanical integrity of the fibula free flap applied to the remaining mandibular region directly influences the prognosis of the surgery. The purpose of this study is to evaluate the biomechanical integrity of two fixation materials [titanium (Ti) and hydroxyapatite/poly-L-lactide (HA-PLLA)]. In this study, we simulated the mechanical properties of miniplate and screw fixations in two different systems by finite element analysis.
View Article and Find Full Text PDFThe use of equipment such as dental handpieces and ultrasonic tips in the dental environment has potentially heightened the generation and spread of aerosols, which are dispersant particles contaminated by etiological factors. Although numerous types of personal protective equipment have been used to lower contact with contaminants, they generally do not exhibit excellent removal rates and user-friendliness in tandem. To solve this problem, we developed a prototype of an air-barrier device that forms an air curtain as well as performs suction and evaluated the effect of this newly developed device through a simulation study and experiments.
View Article and Find Full Text PDFWe fabricated graphene oxide (GO)-incorporated polylactic acid (PLA) (GO-PLA) films by using three-dimensional (3D) printing to explore their potential benefits as barrier membranes for guided bone regeneration (GBR). Our results showed that the 3D printed GO-PLA films provided highly favorable matrices for preosteoblasts and accelerated new bone formation in rat calvarial bone defect models.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinted skin equivalents are highlighted as the new gold standard for alternative models to animal testing, as well as full-thickness wound healing. In this review, we focus on the advances and innovations of 3D bioprinting skin for skin regeneration, within the last five years. After a brief introduction to skin anatomy, 3D bioprinting methods and the remarkable features of recent studies are classified as advances in materials, structures, and functions.
View Article and Find Full Text PDF(1) Background: The stability of implants plays a significant role in the success of osseointegration. The stability of the connection between the fixture and the abutment is one of the critical factors affecting osseointegration. When restoring multiple, non-parallel, and splinted implants, achieving a passive fit can be complicated and challenging.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2021
Nowadays, medical facilities are developing their treatment environment to provide better services to their patients. In particular, dental hospitals have been considered uncomfortable and uninviting spaces, which needs to change so that people can visit easily and feel more relaxed. However, only a few systematic studies have reported on the demand for building a comfortable space.
View Article and Find Full Text PDFA finite element analysis was performed to evaluate the stresses around nails and cortical bones in subtrochanteric (ST) fracture models fixed using short cephalomedullary nails (CMNs). A total 96 finite element models (FEMs) were simulated on a transverse ST fracture at eight levels with three different fracture gaps and two different distal locking screw configurations in both normal and osteoporotic bone. All FEMs were fixed using CMNs 200 mm in length.
View Article and Find Full Text PDFMaterials (Basel)
January 2021
Lately, in orthodontic treatments, the use of transparent aligners for the correction of malocclusions has become prominent owing to their intrinsic advantages such as esthetics, comfort, and minimal maintenance. Attempts at improving upon this technology by varying various parameters to investigate the effects on treatments have been carried out by several researchers. Here, we aimed to investigate the biomechanical and clinical effects of aligner thickness on stress distributions in the periodontal ligament and changes in the tooth's center of rotation.
View Article and Find Full Text PDFFixation materials used in the surgical treatment of subcondylar fractures contribute to successful clinical outcomes. In this study, we simulated the mechanical properties of four fixation materials [titanium (Ti), magnesium alloy (Mg alloy), poly-L-lactic acid (PLLA), and hydroxyapatite/poly-L-lactide (HA-PLLA)] in a finite-element analysis model of subcondylar fracture. Two four-hole plates were fixed on the anterior and posterior surfaces of the subcondyle of the mandible.
View Article and Find Full Text PDFBone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials.
View Article and Find Full Text PDFMalocclusion is considered as a developmental disorder rather than a disease, and it may be affected by the composition and proportions of masseter muscle fibers. Orthodontics is a specialty of dentistry that deals with diagnosis and care of various irregular bite and/or malocclusion. Recent developments of 3D scanner and 3D printing technology has led to the use of a removable thermoplastic aligner (RTA), which is widely used due to its aesthetic excellence, comfortableness, and time efficiency.
View Article and Find Full Text PDFThe study was designed to evaluate the effects of a liquid-type scanning-aid material on the accuracy and time efficiency of intraoral digital impressions compared to those of two different types of powder scanning-aid material and the powder-free scanning method. Three reference models (inlay, onlay, and bridge) were fabricated by a 3D printer and scanned with a model scanner to make the reference datasets. Four experimental groups (application of ScanCure, VITA, IP, and no treatment) were established, and the scans were acquired (each n = 5) using the Trios 3® (3 Shape, Copenhagen, Denmark).
View Article and Find Full Text PDFMechanical testing based on ISO 14801 standard is generally used to evaluate the performance of the dental implant system according to material and design changes. However, the test method is difficult to reflect on the clinical environment because the ISO 14801 standard does not take into account the various loads from different directions during chewing motion. In addition, the fracture pattern of the implant system can occur both in the horizontal and the vertical directions.
View Article and Find Full Text PDFRecently, a hydroxyapatite particle/poly-L-lactide (HA-PLLA) composite device was introduced as an alternative to previous fixation systems. In this study, we used finite element analysis to simulate peak von Mises stress (PVMS) and deformation of bone plates and screws with the following four materials-Ti, Mg alloy, PLLA, and HA-PLLA-at a unilateral mandibular fracture. A three-dimensional virtual mandibular model was constructed, and the fracture surface was designed to run from the left mandibular angle.
View Article and Find Full Text PDFThe initial stability of a dental implant is known to be an indicator of osseointegration at immediate loading upon insertion. Implant designs have a fundamental role in the initial stability. Although new designs with advanced surface technology have been suggested for the initial stability of implant systems, verification is not simple because of various assessment factors.
View Article and Find Full Text PDFObjectives: This study was conducted to investigate the stress around nails and cortical bones in subtrochanteric (ST) fractures fixed using short cephalomedullary nails (CMNs) in finite element models (FEMs) and to determine the appropriate short CMN type for different fracture levels.
Methods: The following three types of short CMNs were used: type A, which is 170 mm in length and has 1 distal locking screw; type B, 200 mm in length and 1 distal screw; and type C, 200 mm in length and 2 distal screws. A total of 24 FEMs were tested on a transverse ST fracture at 8 levels [0, 10, 20, 25, 30, 35, 40 and 50 mm below the lower margin of lesser trochanter (LT)], and were fixed using 3 different CMN types.
A polyphenolic extract from melon ( L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models.
View Article and Find Full Text PDFObjectives: This biomechanical study was conducted to compare fixation stability of the proximal fragments and their mechanical characteristics in proximal femur models of unstable basicervical IT fractures fixed by cephalomedullary nailing using 3 different types of the femoral head fixation.
Methods: A total of 36 composite femurs corresponding to osteoporotic human bone were used. These specimens were fixed with Gamma 3 (hip screw type; group 1) in 12, Gamma 3 U-blade (screw-blade hybrid type; group 2) in 12, and proximal femoral nail antirotation-II (helical blade type; group 3) in 12, respectively, and an unstable basicervical IT fracture was created by an engraving machine.
Peri-implantitis is a common complication following dental implant placement, which may lead to bone loss and fixation failure. With the conventional fixture, it is difficult to perfectly clear-up the infection. To solve this, we have designed a separable fixture of which the top part is replaceable.
View Article and Find Full Text PDFWe investigated the effect of combined fibular osteotomy on the pressure of the tibiotalar and talofibular joints in medial opening-wedge supramalleolar osteotomy. Three different tibial osteotomy gaps (6, 8, and 10 mm) were created in 10 cadaveric models, and the pressure in the tibiotalar and talofibular joints was measured under axial load before and after fibular osteotomy. The heel alignment angle and talar translation ratio were evaluated radiographically.
View Article and Find Full Text PDF