Protein design has focused primarily on the design of ground states, ensuring they are sufficiently low energy to be highly populated. Designing the kinetics and dynamics of a system requires, in addition, the design of excited states that are traversed in transitions from one low-lying state to another. This is a challenging task as such states must be sufficiently strained to be poorly populated, but not so strained that they are not populated at all, and because protein design methods have generally focused on creating near-ideal structures.
View Article and Find Full Text PDFLithium metal batteries (LMBs) have been recognized as high-energy storage alternatives; however, problematic surface reactions due to dendritic Li growth are major obstacles to their widespread utilization. Herein, a 3-mercapto-1-propanesulfonic acid sodium salt (MPS) with asymmetrically functionalized thiol and sulfonate groups as polarizable interface-restructuring molecules is proposed to achieve rapid and longer-operating LMBs. Under a harsh condition of 5 mA cm, Li-Li symmetric cells employing MPS can be cycled over 1200 cycles, outperforming those employing other molecules symmetrically functionalized by thiol or sulfonate groups.
View Article and Find Full Text PDFThe efficient evolution of gaseous hydrogen and oxygen from water is required to realize sustainable energy conversion systems. To address the sluggish kinetics of the multielectron transfer reaction, bifunctional catalyst materials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) should be developed. Herein, a tailored combination of atomically minimized iridium catalysts and highly conductive black WO nanofiber supports are developed for the bifunctional electrolyzer system.
View Article and Find Full Text PDFReaching the border of the capable energy limit in existing battery technology has turned research attention away from the rebirth of unstable Li-metal anode chemistry in order to achieve exceptional performance. Strict regulation of the dendritic Li surface reaction, which results in a short circuit and safety issues, should be achieved to realize Li-metal batteries. Herein, this study reports a surface-flattening and interface product stabilizing agent employing methyl pyrrolidone (MP) molecular dipoles in the electrolyte for cyclable Li-metal batteries.
View Article and Find Full Text PDFSurface modification of cathodes using Ni-rich coating layers prevents bulk and surface degradation for the stable operation of Li-ion batteries at high voltages. However, insulating and dense inorganic coating layers often impede charge transfer and ion diffusion kinetics. In this study, the fabrication of dual functional coating materials using metal-organic polyhedra (MOP) with 3D networks within microporous units of Li-ion batteries for surface stabilization and facile ion diffusion is proposed.
View Article and Find Full Text PDFFeynman's imaginary time path integral formalism of quantum statistical mechanics and the corresponding quantum-classical isomorphism provide a tangible way of incorporating nuclear quantum effect (NQE) in the simulation of condensed matter systems using well-developed classical simulation techniques. Our previous work has presented the many-body coarse-graining of path integral (CG-PI) theory that builds an isomorphism between the quantum partition function of distinguishable particles and the classical partition function of 2 pseudoparticles. In this present work, we develop a generalized version of the many-body CG-PI theory that incorporates many-body interactions in the force field.
View Article and Find Full Text PDFBlack valve metal oxides with low oxygen vacancies are identified to be promising for various industrial applications, such as in gas sensing, photocatalysis, and rechargeable batteries, owing to their high reducibility and stability, as well as considerable fractions of low-valent metal species and oxygen vacancies in their lattices. Herein, the nanofiber (NF) of black oxygen-deficient tungsten trioxide (WO ) is presented as a versatile and robust support for the direct growth of a platinum catalyst for oxygen reduction reaction (ORR). The nonstoichiometric, poorly crystallized black WO NFs are prepared by electrospinning the W precursor into NFs followed by their low-temperature (650 °C) reductive calcination.
View Article and Find Full Text PDFControlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS conversion reaction pillars (EG-MoS) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS under different thermal treatment conditions.
View Article and Find Full Text PDFLithium-oxygen (Li-O) batteries have been intensively investigated in recent decades for their utilization in electric vehicles. The intrinsic challenges arising from O (electro)chemistry have been mitigated by developing various types of catalysts, porous electrode materials, and stable electrolyte solutions. At the next stage, we face the need to reform batteries by substituting pure O gas with air from Earth's atmosphere.
View Article and Find Full Text PDFThe applicability of Na-ion batteries is contingent on breakthroughs in alternative electrode materials that have high capacities and which are economically viable. Unfortunately, conventional graphite anodes for Li-ion battery systems do not allow Na-ion accommodation into their interlayer space owing to the large ionic radius and low stabilizing energy of Na in graphite. Here, we suggest a promising strategy for significantly increasing Na capacity by expanding the axial slab space of graphite.
View Article and Find Full Text PDFFeynman's imaginary time path integral approach to quantum statistical mechanics provides a theoretical formalism for including nuclear quantum effects (NQEs) in simulation of condensed matter systems. Sinitskiy and Voth [J. Chem.
View Article and Find Full Text PDFOne of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries.
View Article and Find Full Text PDFMXenes, a new family of two-dimensional structures, have recently gained significant attention due to their unique physical properties suitable for a wide range of potential applications. Here we introduce TiCT delaminated monolayers as ultrathin transparent conductors with properties exceeding comparable reduced graphene oxide films. Solution processed TiCT films exhibit sheet resistances as low as 437 Ω sq with 77% transmittance at 550 nm.
View Article and Find Full Text PDFControlling structural and morphological features of molybdenum disulfide (MoS) nanoplates determines anode reaction performance for Li-ion and Na-ion batteries. In this work, we investigate dimensional effects of MoS nanoplates randomly embedded in twisted mesoporous carbon nanofibers (MoS@MCNFs) on Li and Na storage properties. Considering dimensions of the MoS nanoplates (e.
View Article and Find Full Text PDFThe development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.
View Article and Find Full Text PDFUnderstanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer.
View Article and Find Full Text PDFRechargeable Li-O2 and Li-air batteries require electrode and electrolyte materials that synergistically promote long-term cell operation. In this study, we investigate the role of noble metals Pt and Pd as catalysts in the Li-O2 oxidation process and their compatibility with dimethyl sulfoxide (DMSO) based electrolytes. We identify a basis for low potential Li2O2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.
View Article and Find Full Text PDFIn this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures.
View Article and Find Full Text PDFHeterogeneous electrode materials with hierarchical architectures promise to enable considerable improvement in future energy storage devices. In this study, we report on a tailored synthetic strategy used to create heterogeneous tungsten sulfide/oxide core-shell nanofiber materials with vertically and randomly aligned thorn-bush features, and we evaluate them as potential anode materials for high-performance Na-ion batteries. The WSx (2 ≤ x ≤ 3, amorphous WS3 and crystalline WS2) nanofiber is successfully prepared by electrospinning and subsequent calcination in a reducing atmosphere.
View Article and Find Full Text PDFElectrochemical devices such as fuel cells, electrolyzers, lithium-air batteries, and pseudocapacitors are expected to play a major role in energy conversion/storage in the near future. Here, it is demonstrated how desirable bulk metallic glass compositions can be obtained using a combinatorial approach and it is shown that these alloys can serve as a platform technology for a wide variety of electrochemical applications through several surface modification techniques.
View Article and Find Full Text PDFFully integrated transparent devices require versatile architectures for energy storage, yet typical battery electrodes are thick (20-100 μm) and composed of optically absorbent materials. Reducing the length scale of active materials, assembling them with a controllable method and minimizing electrode thickness should bring transparent batteries closer to reality. In this work, the rapid and controllable spin-spray layer-by-layer (SSLbL) method is used to generate high quality networks of 1D nanomaterials: single-walled carbon nanotubes (SWNT) and vanadium pentoxide (V2O5) nanowires for anode and cathode electrodes, respectively.
View Article and Find Full Text PDFAn effective integrated design with a free standing and carbon-free architecture of spinel MnCo2O4 oxide prepared using facile and cost effective hydrothermal method as the oxygen electrode for the Li-O2 battery, is introduced to avoid the parasitic reactions of carbon and binder with discharge products and reaction intermediates, respectively. The highly porous structure of the electrode allows the electrolyte and oxygen to diffuse effectively into the catalytically active sites and hence improve the cell performance. The amorphous Li2O2 will then precipitate and decompose on the surface of free-standing catalyst nanorods.
View Article and Find Full Text PDFAmorphous silicon (a-Si) has been intensively explored as one of the most attractive candidates for high-capacity and long-cycle-life anode in Li-ion batteries (LIBs) primarily because of its reduced volume expansion characteristic (∼280%) compared to crystalline Si anodes (∼400%) after full Li(+) insertion. Here, we report one-dimensional (1-D) electrospun Si-based metallic glass alloy nanofibers (NFs) with an optimized composition of Si60Sn12Ce18Fe5Al3Ti2. On the basis of careful compositional tailoring of Si alloy NFs, we found that Ce plays the most important role as a glass former in the formation of the metallic glass alloy.
View Article and Find Full Text PDFControlling the mesoscale geometric configuration of catalysts on the oxygen electrode is an effective strategy to achieve high reversibility and efficiency in Li-O2 batteries. Here we introduce a new Li-O2 cell architecture that employs a catalytic polymer-based membrane between the oxygen electrode and the separator. The catalytic membrane was prepared by immobilization of Pd nanoparticles on a polyacrylonitrile (PAN) nanofiber membrane and is adjacent to a carbon nanotube electrode loaded with Ru nanoparticles.
View Article and Find Full Text PDFSelf-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder.
View Article and Find Full Text PDF