Publications by authors named "Won-Hee Kang"

Article Synopsis
  • This paper presents a new data-driven method to boost the accuracy of wildfire spread predictions using satellite wildfire detection data.
  • It introduces an improved algorithm that uses a genetic algorithm to optimize the Rate of Spread (ROS) adjustment factor, making predictions more precise in the FARSITE wildfire simulator.
  • The methodology, tested during the 2020 Creek Fire in California, shows that the innovative Directional ROS approach outperforms traditional methods, aiding in better wildfire response strategies and resource allocation.
View Article and Find Full Text PDF

Background: Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential.

View Article and Find Full Text PDF

Background: Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA.

View Article and Find Full Text PDF

Alternative splicing (AS) is a widely observed phenomenon in eukaryotes that plays a critical role in development and stress responses. In plants, the large number of RNA-seq datasets in response to different environmental stressors can provide clues for identification of condition-specific and/or common AS variants for preferred agronomic traits. We report RNA-seq datasets (350.

View Article and Find Full Text PDF

High-resolution melting (HRM) analysis is a simple, fast, and inexpensive real-time polymerase chain reaction (PCR)-based method used to identify genetic variation between populations and detect single-nucleotide polymorphisms (SNPs) in nucleic acid sequences. HRM is a powerful technique that detects the differences between SNP allele melting temperatures by using a fluorescent dye inserted into the duplex deoxyribonucleic acid (DNA) structure. Prior to performing HRM analysis, optimizing the primer design, PCR mixture, and software settings is essential to obtain accurate and reliable results.

View Article and Find Full Text PDF

Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions.

View Article and Find Full Text PDF

In this study, coffee pulp was examined as a starting material to make alcoholic beverages (coffee pulp wine) and yeast fermentation ability. We have evaluated five yeasts, three of which were previously isolated from the coffee cherry, and the other two were commercial yeasts. The pH, °Brix, viable yeast cells, and color parameters of coffee pulp wines were measured.

View Article and Find Full Text PDF

Receptor-like proteins (RLPs) are a gene family of cell surface receptors that are involved in plant growth, development, and disease resistance. In a recent study, 438 pepper RLP genes were identified in the genome (CaRLPs) and determined to be present in response to multiple biotic stresses. To further understand the role of CaRLPs in plant growth and development, we analyzed expression patterns of all CaRLPs from various pepper tissues and developmental stages using RNA-seq.

View Article and Find Full Text PDF

Bacterial wilt (BW) disease from is a serious disease and causes severe yield losses in chili peppers worldwide. Resistant cultivar breeding is the most effective in controlling BW. Thus, a simple and reliable evaluation method is required to assess disease severity and to investigate the inheritance of resistance for further breeding programs.

View Article and Find Full Text PDF

Objectives: Phytohormones are small signaling molecules with crucial roles in plant growth, development, and environmental adaptation to biotic and abiotic stress responses. Despite several previously published molecular studies focused on plant hormones, our understanding of the transcriptome induced by phytohormones remains unclear, especially in major crops. Here, we aimed to provide transcriptome dataset using RNA sequencing for phytohormone-induced signaling in plant.

View Article and Find Full Text PDF

There are different types of coffee processing methods. The wet (WP) and dry processing (DP) methods are widely practiced in different parts of coffee-growing countries. There is also a digestive bioprocessing method in which the most expensive coffee is produced.

View Article and Find Full Text PDF

Peppers (Capsicum annuum L.), belonging to the Solanaceae family, are one of the most economically important crops globally. Like other crops, peppers are threatened by diverse environmental conditions due to different pathogens and abiotic stresses.

View Article and Find Full Text PDF

This experiment was carried out to identify and select pectinolytic yeasts that have potential use as a starter culture for coffee fermentation during wet processing. The coffee fruit was fermented for 48 h at 28 °C and a sample was taken from the fermented solution and spread onto yeast extract-peptone-dextrose agar (YPDA) media and incubated at 28 °C. A total of 28 yeasts were isolated, eight of which had the ability to produce pectinase enzymes.

View Article and Find Full Text PDF

The soil-borne pathogen causes severe destruction of spp. Resistance in against is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success.

View Article and Find Full Text PDF

Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato ( L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome.

View Article and Find Full Text PDF

(CMV) is one of the most devastating phytopathogens of . The single dominant resistance gene, (), that confers resistance to the CMV isolate P0 has been overcome by a new isolate (CMV-P1) after being deployed in pepper () breeding for over 20 years. A recently identified Indian cultivar, "Lam32," displays resistance to CMV-P1.

View Article and Find Full Text PDF

Background: Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants.

Results: We report two high-quality de novo genomes (Capsicum baccatum and C.

View Article and Find Full Text PDF

Pepper mottle virus (PepMoV) is the most common potyvirus infection of pepper plants and causes significant yield losses. The Pvr7 gene from Capsicum chinense PI159236 and the Pvr4 gene from C. annuum CM334 both have been reported to confer dominant resistance to PepMoV.

View Article and Find Full Text PDF

Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H.

View Article and Find Full Text PDF

The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper.

View Article and Find Full Text PDF

Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10.

View Article and Find Full Text PDF

Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C.

View Article and Find Full Text PDF

The eukaryotic translation elongation factor 1 (eEF1) has two components: the G-protein eEF1A and the nucleotide exchange factor eEF1B. In plants, eEF1B is itself composed of a structural protein (eEF1Bγ) and two nucleotide exchange subunits (eEF1Bα and eEF1Bβ). To test the effects of elongation factors on virus infection, we isolated eEF1A and eEF1B genes from pepper (Capsicum annuum) and suppressed their homologs in Nicotiana benthamiana using virus-induced gene silencing (VIGS).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on hot pepper (Capsicum annuum), a widely cultivated spice, detailing its whole-genome sequencing and assembly, revealing it has a genome four times larger than tomato.
  • Researchers also analyzed two cultivated pepper varieties and a wild type (Capsicum chinense), uncovering key genetic elements influencing capsaicinoid (spicy compound) production.
  • The findings emphasize the role of gene expression changes and ripening processes that can enhance the nutritional and medicinal properties of hot peppers.
View Article and Find Full Text PDF

The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E.

View Article and Find Full Text PDF