Publications by authors named "Won il Park"

Abundant Li resources in the ocean are promising alternatives to refining ore, whose supplies are limited by the total amount and geopolitical imbalance of reserves in Earth's crust. Despite advances in Li extraction using porous membranes, they require screening other cations on a large scale due to the lack in precise control of pore size and inborn defects. Herein, MoS nanoflakes on a multilayer graphene membrane (MFs-on-MGM) that possess ion channels comprising i) van der Waals interlayer gaps for optimal Li extraction and ii) negatively charged vertical inlets for cation attraction, are reported.

View Article and Find Full Text PDF

In this study, we propose a rational route to create wrinkling patterns with individually controllable location and direction in thin polymer films. Optical and atomic force microscopy analysis confirmed the formation of straight wrinkles with a typical width of 1.51 to 1.

View Article and Find Full Text PDF

Objectives: Chigger mites are vectors for scrub typhus. This study evaluated the annual fluctuations in chigger mite populations and infections in South Korea.

Methods: During 2006 and 2007, chigger mites were collected monthly from wild rodents in 4 scrub typhus endemic regions of South Korea.

View Article and Find Full Text PDF

Despite the important role of carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) binders in graphite electrodes for Li-ion batteries, the direct analysis of these binders remains challenging, particularly at very low concentrations as in practical graphite anodes. In this paper, we report the systematic investigation of the physiochemical behavior of the CMC and SBR binders and direct observations of their distributions in practical graphite electrodes. The key to this unprecedented capability is combining the advantages of several analytic techniques, including laser-ablation laser-induced break-down spectroscopy, time of flight secondary ion mass spectrometry, and a surface and interfacial cutting analysis system.

View Article and Find Full Text PDF

The electrical double layer (EDL), consisting of two parallel layers of opposite charges, is foundational to many interfacial phenomena and unique in atomically thin materials. An important but unanswered question is how the "transparency" of atomically thin materials to their substrates influences the formation of the EDL. Here, we report that the EDL of graphene is directly affected by the surface energy of the underlying substrates.

View Article and Find Full Text PDF

Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self-powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed.

View Article and Find Full Text PDF

With increasing demand for high-capacity and rapidly rechargeable anodes, problems associated with unstable evolution of a solid-electrolyte interphase on the active anode surface become more detrimental. Here, we report the near fatigue-free, ultrafast, and high-power operations of lithium-ion battery anodes employing silicide nanowires anchored selectively to the inner surface of graphene-based micro-tubular conducting electrodes. This design electrically shields the electrolyte inside the electrode from an external potential load, eliminating the driving force that generates the solid-electrolyte interphase on the nanowire surface.

View Article and Find Full Text PDF

Graphene has attracted great attention as an alternative to conventional metallic or transparent conducting electrodes. Despite its similarities with conventional electrodes, recent studies have shown that a single-atom layer of graphene possesses unique characteristics, such as a tunable work function and transparencies for electric potential, reactivity, and wetting. Nevertheless, a systematic analysis of graphene and semiconductor junction characteristics has not yet been carried out.

View Article and Find Full Text PDF

Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone.

View Article and Find Full Text PDF

Well-ordered nanostructure arrays with controlled densities can potentially improve material properties; however, their fabrication typically involves the use of complicated processing techniques. In this work, we demonstrate a uniaxial alignment procedure for fabricating poly(vinylidene fluoride) (PVDF) electrospun nanofibers (NFs) by introducing collectors with additional steps. The mechanism of the observed NF alignment, which occurs due to the concentration of lateral electric field lines around collector steps, has been elucidated via finite-difference time-domain simulations.

View Article and Find Full Text PDF

We report the role of defects in enzymatic graphene field-effect transistor sensors by introducing engineered defects in graphene channels. Compared with conventional graphene sensors (Gr sensors), graphene mesh sensors (GM sensors), with an array of circular holes, initially exhibited a higher irreversible response to glucose, involving strong chemisorption to edge defects. However, after immobilization of glucose oxidase, the irreversibility of the responses was substantially diminished, without any reduction in the sensitivity of the GM sensors (i.

View Article and Find Full Text PDF

Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

View Article and Find Full Text PDF

Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers observed charge separation and a space-charge region in a specific type of organic single-crystal nanowire called a p-n heterojunction, using scanning photocurrent microscopy.
  • This nanowire was made from two materials: P3HT (p-type) and C60 (n-type), created using an advanced printing technique.
  • The study highlights a new method for accurately analyzing charge movement in organic materials, which can help in designing better nanoscale optoelectronic devices.
View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease that is endemic to China, Japan, and the Republic of Korea (ROK). In this study, 8313 ticks collected from SFTS outbreak areas in the ROK in 2013 were used to detect the SFTS virus (SFTSV). A single SFTSV was isolated in cell culture from one pool of Haemaphysalis longicornis ticks collected from Samcheok-si, Gangwon Province, in the ROK.

View Article and Find Full Text PDF

We have studied the role of defects in electrolyte-gated graphene mesh (GM) field-effect transistors (FETs) by introducing engineered edge defects in graphene (Gr) channels. Compared with Gr-FETs, GM-FETs were characterized as having large increments of Dirac point shift (∼30-100 mV/pH) that even sometimes exceeded the Nernst limit (59 mV/pH) by means of electrostatic gating of H(+) ions. This feature was attributed to the defect-mediated chemisorptions of H(+) ions to the graphene edge, as supported by Raman measurements and observed cycling characteristics of the GM FETs.

View Article and Find Full Text PDF

Managing interfacial instability is crucial for enhancing cyclability in lithium-ion batteries (LIBs), yet little attention has been devoted to this issue until recently. Here, we introduce graphene as an interfacial layer between the current collector and the anode composed of Si nanowires (SiNWs) to improve the cycling capability of LIBs. The atomically thin graphene lessened the stress accumulated by volumetric mismatch and inhibited interfacial reactions that would accelerate the fatigue of Si anodes.

View Article and Find Full Text PDF

Purpose: Ventricular repolarization is assessed using the QT interval corrected by the heart rate (QTc) via an electrocardiogram (ECG). Prolonged QTc is associated with an increased risk of arrhythmias and cardiac mortality. As there have been few reports regarding the effects of hyperthyroidism on ventricular repolarization, we studied the association between serum free thyroxine (free T4 [fT4]) and thyroid stimulating hormone (TSH) levels and the QTc interval.

View Article and Find Full Text PDF

Nanoscale time-dependent mechanical-electrical coupled behavior of single crystal ZnO nanorods was systematically explored, which is essential for accessing the long-term reliability of the ZnO nanorod-based flexible devices. A series of compression creep tests combined with in-situ electrical measurement was performed on vertically-grown single crystal ZnO nanorods. Continuous measurement of the current (I)-voltage (V) curves before, during, after the creep tests revealed that I is non-negligibly increased as a result of the time-dependent deformation.

View Article and Find Full Text PDF

Wet-chemical synthesis is a promising alternative to the conventional vapour-phase method owing to its advantages in commercial-scale production at low cost. Studies on nanocrystallization in solution have suggested that growth rate is commonly affected by the size and density of surrounding crystals. However, systematic investigation on the mutual interaction among neighbouring crystals is still lacking.

View Article and Find Full Text PDF

To clarify the geographical distribution of scrub typhus vectors in Korea, a survey of larval trombiculid mites was conducted from 2005 to 2007 by collecting wild small mammals twice a year (spring and autumn) at 24 sites nationwide. A total of 67,325 mites representing 4 genera and 14 species were collected from 783 trapped rodents, corresponding to a chigger index (number of chigger mites per rodent) of 86.0.

View Article and Find Full Text PDF

Pseudohypoparathyroidism type Ia (PHP Ia) is a disorder characterized by multiform hormonal resistance including parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations within the Gs alpha-encoding GNAS exons. A 9-year-old boy presented with clinical and laboratory abnormalities including hypocalcemia, hyperphosphatemia, PTH resistance, multihormone resistance and AHO (round face, short stature, obesity, brachydactyly and osteoma cutis) which were typical of PHP Ia.

View Article and Find Full Text PDF

Chemically synthesized semiconductor nanowires (NWs) have demonstrated substantial promise for nanoelectronics, nanoenergy, and nanobiotechnology, but the lack of an effective and controllable assembly process has limited the wide adoption of NWs in these areas. Here we demonstrate a facile, robust, and controllable approach to assembling and densifying a parallel array of NWs using shrinkable shape memory polymers. Using thermal-induced shrinkage of polystyrene, we were able to successfully assemble and densify NW arrays up to close-packing and, furthermore, achieve tunable density (up to ∼300% amplification of density) by controlling the shrinkage process.

View Article and Find Full Text PDF

Transovarial transmission of Orientia tsutsugamushi in colonies of Leptotrombidium palpale was studied in the parent and F1 and F2 generations. Both transovarial transmission and filial infection rates were 100% in the parent and F1 generations of Leptotrombidium palpale. The filial infection rate in the F1 generation was 100%, but it declined to 94.

View Article and Find Full Text PDF