Introduction: Demyelinating Charcot-Marie-Tooth disease (CMT) is caused by mutations in the genes that encode myelinating proteins or their transcription factors. Our study thus sought to assess the therapeutic effects of cytokines secreted from mesenchymal stem cells (MSCs) on this disease.
Methods: The therapeutic potential of Wharton's jelly MSCs (WJ-MSCs) and cytokines secreted by WJ-MSCs was evaluated on Schwann cells (SCs) exhibiting demyelination features, as well as a mouse model of demyelinating CMT.
Mutations in myelin protein zero (MPZ) cause inherited peripheral neuropathies, including Charcot‑Marie‑Tooth disease (CMT) and Dejerine‑Sottas neuropathy. Mutant MPZ proteins have previously been reported to cause CMT via enhanced endoplasmic reticulum (ER) stress and Schwann cell (SC) death, although the pathological mechanisms have not yet been elucidated. In this study, we generated an in vitro model of rat SCs expressing mutant MPZ (MPZ V169fs or R98C) proteins and validated the increase in cell death and ER stress induced by the overexpression of the MPZ mutants.
View Article and Find Full Text PDFTranscriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease (CMT) is a heterogeneous group of peripheral neuropathies with diverse genetic causes. In this study, we identified p.I43N mutation in PMP2 from a family exhibiting autosomal dominant demyelinating CMT neuropathy by whole exome sequencing and characterized the clinical features.
View Article and Find Full Text PDFObjective: Distal myopathy is a heterogeneous group of muscle diseases characterized by predominant distal muscle weakness. A study was done to identify the underlying cause of autosomal recessive adolescent onset distal myopathy.
Methods: Four patients from 2 unrelated Korean families were evaluated.
Mesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs.
View Article and Find Full Text PDF