Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated.
View Article and Find Full Text PDFCisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2023
Conventional swabs have been used as a non-invasive method to obtain samples for DNA analysis from the buccal and the nasal mucosa. However, swabs may not always collect pure enough genetic material. In this study, buccal and nasal microneedle swab is developed to improve the accuracy and reliability of genomic analysis.
View Article and Find Full Text PDFAdult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis.
View Article and Find Full Text PDFOct4 is an important mammalian POU family transcription factor expressed by early human embryonic stem cells (hESCs). The precise level of Oct4 governs the pluripotency and fate determination of hESCs. Several post-translational modifications (PTMs) of Oct4 including phosphorylation, ubiquitination, and SUMOylation have been reported to regulate its critical functions in hESCs.
View Article and Find Full Text PDFUltrathin amorphous silica membranes with embedded organic molecular wires (oligo(-phenylenevinylene), three aryl units) provide chemical separation of incompatible catalytic environments of CO reduction and HO oxidation while maintaining electronic and protonic coupling between them. For an efficient nanoscale artificial photosystem, important performance criteria are high rate and directionality of charge flow. Here, the visible-light-induced charge flow from an anchored Ru bipyridyl light absorber across the silica nanomembrane to CoO water oxidation catalyst is quantitatively evaluated by photocurrent measurements.
View Article and Find Full Text PDFTranspiration can directly reflect the response of the crop growth and development, therefore irrigation design based on a transpiration model is an important factor towards establishing an efficient irrigation strategy. Thus, the purpose of this experiment is to develop and verify a tomato transpiration model by correcting the relationship between the transpiration rate and environmental factors by measuring the actual transpiration rate. The actual crop transpiration rate, which is measured using a load cell, and the weight changes calculated at 10-min intervals, are applied to the development of the transpiration model.
View Article and Find Full Text PDFChemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects.
View Article and Find Full Text PDFThe concept of a neutral hole-transporting polymer is realized for the first time, by integrating patterned Cl(-) -doped poly(3,4-dimethoxythiophene) thin films into organic solar cells through a vacuum-based polymer vapor printing technique. Due to this novel polymer's neutrality, high transparency, good conductivity, and appropriate energy levels, the solar-cell efficiency and lifetime are significantly enhanced.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
Through phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO4 (Bi1-XInXV1-XMoXO4) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO4 as well as a higher (more negative) conduction band than H(+)/H2 potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H2 from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In(3+)/Mo(6+) dual doping triggers partial phase transformation from pure monoclinic BiVO4 to a mixture of monoclinic BiVO4 and tetragonal BiVO4, which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening.
View Article and Find Full Text PDFWell-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation.
View Article and Find Full Text PDF