Publications by authors named "Wolthaus J"

Background: For the development and validation of dynamic treatment modalities and processes on the MR-linac, independent measurements should be performed that validate dose delivery and linac behavior at a high temporal resolution. To achieve this, a detector with both high temporal and spatial resolution is necessary.

Purpose: This study investigates the suitability of a Delta4 Phantom+ MR (Delta4) detector array for time-resolved dosimetry in the 1.

View Article and Find Full Text PDF

Background And Purpose: Patients with cardiac implantable electronic devices (CIED patients) are often ineligible for online magnetic resonance-guided radiotherapy (MRgRT), most likely due to the absence of established guidelines. Existing radiotherapy (RT) and magnetic resonance imaging (MRI) guidelines offer an opportunity to construct MRgRT protocols, promoting equitable access. Our objective was to present such a workflow, share multi-institutional experiences treating CIED patients with MRgRT on a 1.

View Article and Find Full Text PDF

Background And Purpose: During an end-to-end (E2E) test on the online workflow of the MR-linac, the performance of the treatment starting from the acquisition of pre-treatment MRI scans and ending with dose delivery is quantified. In such a test, the geometrical accuracy of the entire workflow is assessed. Ideally, the 3D geometrical accuracy of dose delivery on an MR-linac should be assessed using dosimeters that provide 3D dose distributions.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration.

View Article and Find Full Text PDF

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac.

View Article and Find Full Text PDF

Objective: The goal of this consensus expert opinion was to define quality assurance (QA) tests for online magnetic resonance image (MRI) guided radiotherapy (oMRgRT) systems and to define the important medical physics aspects for installation and commissioning of an oMRgRT system.

Materials And Methods: Ten medical physicists and two radiation oncologists experienced in oMRgRT participated in the survey. In the first round of the consensus expert opinion, ideas on QA and commissioning were collected.

View Article and Find Full Text PDF

Purpose: To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI-linac.

Methods: Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines.

View Article and Find Full Text PDF

Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems.

View Article and Find Full Text PDF

Introduction: Increased modulation and dynamical delivery of external beam radiotherapy (EBRT), such as volumetric modulated arc therapy (VMAT) with dynamic gantry rotation, continuously variable dose rate (CVDR) and field shapes that change during the beam, place greater demands on the performance of linear accelerators (linac). In this study, the accuracy of the linac beam steering is improved by the application of a new method to determine the gantry-dependent lookup table.

Methods: An improved method of lookup table creation based on service graphing information from the linac is investigated.

View Article and Find Full Text PDF

High impedance coils (HICs) are suitable as a building block of receive arrays for MRI-guided radiotherapy (MRIgRT) as HICs do not require radiation-attenuating capacitors and dense support materials. Recently, we proved the feasibility of using HICs to create a radiation transparent (i.e.

View Article and Find Full Text PDF

With the rapid increase in clinical treatments with MRI-linacs, a consistent, harmonized and sustainable ground for reference dosimetry in MRI-linacs is needed. Specific for reference dosimetry in MRI-linacs is the presence of a strong magnetic field. Therefore, existing Code of Practices (CoPs) are inadequate.

View Article and Find Full Text PDF

Purpose: Reference dosimetry in a strong magnetic field is made more complex due to (a) the change in dose deposition and (b) the change in sensitivity of the detector. Potentially it is also influenced by thin air layers, interfaces between media, relative orientations of field, chamber and radiation, and minor variations in ion chamber stem or electrode construction. The PTW30013 and IBA FC65-G detectors are waterproof Farmer-type ion chambers that are suitable for reference dosimetry.

View Article and Find Full Text PDF

Online adaptive radiotherapy using the 1.5 Tesla MR-linac is feasible for SBRT (5 × 7 Gy) of pelvic lymph node oligometastases. The workflow allows full online planning based on daily anatomy.

View Article and Find Full Text PDF

The output of MRI-integrated photon therapy (MRgXT) devices is measured in terms of absorbed dose to water, D . Traditionally this is done with reference type ion chambers calibrated in a beam quality Q without magnetic field. To correct the ion chamber response for the application in the magnetic field, a factor needs to be applied that corrects for both beam quality Q and the presence of the magnetic field B, k .

View Article and Find Full Text PDF

The out-of-field surface dose contribution due to backscattered or ejected electrons, focused by the magnetic field, is evaluated in this work. This electron streaming effect (ESE) can contribute to out-of-field skin doses in orthogonal magnetic resonance guided radiation therapy machines. Using the EGSnrc Monte Carlo package, a phantom is set-up along the central axis of an incident 10 [Formula: see text] 10 cm 7 MV FFF photon beam.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the potential skin dose toxicity contribution of spiralling contaminant electrons (SCE) generated in the air in an MR-linac with a 0.35 or 1.5 T magnetic field using the EGSnrc Monte Carlo (MC) code.

View Article and Find Full Text PDF

MRI guided radiotherapy devices are currently in clinical use. Detector responses are affected by the magnetic field and need to be characterized in terms of absorbed dose to water, D , against primary standards under these conditions. The aim of this study was to commission a water calorimeter, accepted as the Dutch national standard for D in MV photons and to validate its claimed standard uncertainty of 0.

View Article and Find Full Text PDF

By combining magnetic resonance imaging (MRI) scanners and radiotherapy treatment units the need arises for new radiation measurement equipment that can be used in the magnetic field of the MRI. This study describes the investigation of the influence of the 1.5 T magnetic field from an MRI linac on the STARCHECK, a large 2D ionization chamber detector panel.

View Article and Find Full Text PDF

A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.

View Article and Find Full Text PDF

The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis.

View Article and Find Full Text PDF

As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom.

View Article and Find Full Text PDF

Accurate small-field dosimetry is critical for a magnetic resonance linac (MRI-linac). The PTW 60019 microDiamond is close to an ideal detector for small field dosimetry due to its small physical size, high signal-to-noise ratio and approximate water equivalence. It is important to fully characterise the performance of the detector in a 1.

View Article and Find Full Text PDF

To perform patient plan quality assurance (QA) on a newly installed MR-linac (MRL) it is necessary to have an MR-compatible QA device. An MR compatible device (MR-Delta4) has been developed together with Scandidos AB (Uppsala, Sweden). The basic characteristics of the detector response, such as short-term reproducibility, dose linearity, field size dependency, dose rate dependency, dose-per-pulse dependency and angular dependency, were investigated for the clinical Delta4-PT as well as for the MR compatible version.

View Article and Find Full Text PDF

The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery.

View Article and Find Full Text PDF

In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.

View Article and Find Full Text PDF