Publications by authors named "Wolter W"

infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [ (2019), www.cdc.gov/DrugResistance/Biggest-Threats.

View Article and Find Full Text PDF

Pressure ulcers (PUs) are chronic wounds that lead to amputations and death. Little is known about why PUs are recalcitrant to healing. Wound healing is mediated by matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF

is a leading health threat. This pathogen initiates intestinal infections during gut microbiota dysbiosis caused by oral administration of antibiotics. is difficult to eradicate due to its ability to form spores, which are not susceptible to antibiotics.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) are a common complication of diabetes that are recalcitrant to healing due to persistent inflammation. The majority of DFUs have bacterial biofilms, with as a predominant bacterium, requiring infection control with antibiotics before treatment of the wound. Matrix metalloproteinases (MMPs) play roles in the pathology and repair of DFUs.

View Article and Find Full Text PDF

A major challenge for chemotherapy of bacterial infections is perturbation of the intestinal microbiota. is a Gram-positive bacterium of the gut that can thrive under this circumstance. Its production of dormant and antibiotic-impervious spores results in chronic disruption of normal gut flora and debilitating diarrhea and intestinal infection.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play important roles in wound healing, but attribution of their functions in repair of wounds has been challenging. Commonly used tools such as MMP-knockout mice and zymography often confound analysis, which is complicated further as these enzymes exist in three distinct forms with only one being catalytically competent. With the use of topical exogenously administered recombinant MMP-8 and MMP-13 to diabetic and nondiabetic mouse wounds, we show that these proteinases facilitate wound repair by upregulating IL-6 and increasing neutrophil trafficking with an early onset of inflammation.

View Article and Find Full Text PDF

We report herein the syntheses of 79 derivatives of the 4(3)-quinazolinones and their structure-activity relationship (SAR) against methicillin-resistant (MRSA). Twenty one analogs were further evaluated in in vitro assays. Subsequent investigation of the pharmacokinetic properties singled out compound (()-3-(5-carboxy-2-fluorophenyl)-2-(4-cyanostyryl)quinazolin-4(3)-one) for further study.

View Article and Find Full Text PDF

A structure-activity relationship (SAR) for the oxadiazole class of antibacterials was evaluated by syntheses of 72 analogs and determination of the minimal-inhibitory concentrations (MICs) against the ESKAPE panel of bacteria. Selected compounds were further evaluated for toxicity, plasma protein binding, pharmacokinetics (PK), and a mouse model of methicillin-resistant (MRSA) infection. Oxadiazole shows potent antibacterial activity, exhibits low clearance, a high volume of distribution, and 41% oral bioavailability, and shows efficacy in mouse models of MRSA infection.

View Article and Find Full Text PDF

Diabetic foot ulcers are characterized by hypoxia. For many patients, hyperbaric oxygen (HBO) therapy is the last recourse for saving the limb from amputation, for which the molecular basis is not understood. We previously identified the active form of matrix metalloproteinase-9 (MMP-9) as responsible for diabetic foot ulcer's recalcitrance to healing.

View Article and Find Full Text PDF

Castration Resistant Prostate Cancer (CRPC) is thought to be driven by a collaborative mechanism between TNFα/NFκB and TGFβ signaling, leading to inflammation, Epithelial-to-Mesenchymal-Transition (EMT), and metastasis. Initially, TGFβ is a tumor suppressor, but in advanced metastatic disease it switches to being a tumor promoter. TGFBR2 may play a critical role in this collaboration, as its expression is driven by NFκB and it is the primary receptor for TGFβ.

View Article and Find Full Text PDF

The quinazolinones are a new class of antibacterials with efficacy against methicillin-resistant (MRSA). The quinazolinones target cell wall biosynthesis and have a unique mechanism of action by binding to the allosteric site of penicillin-binding protein 2a (PBP 2a). We investigated the potential for synergism of a lead quinazolinone with several antibiotics of different classes using checkerboard and time-kill assays.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) are a significant health problem. A single existing FDA-approved drug for this ailment, becaplermin, is not standard-of-care. We previously demonstrated that upregulation of active matrix metalloproteinase (MMP)-9 is the reason that the diabetic wound in mice is recalcitrant to healing and that MMP-8 participates in wound repair.

View Article and Find Full Text PDF

The metalloproteinase ADAM10 has been reported as an important target for drug discovery in several human diseases. In this vein, (6,7)--hydroxy-5-methyl-6-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazine-1-carbonyl)-5-azaspiro[2.5]octane-7-carboxamide (compound ) has been reported as a selective ADAM10 inhibitor.

View Article and Find Full Text PDF

Chronic wounds are a complication of diabetes. Treatment for diabetic foot ulcers is complex with little clinical recourse, resulting in 108,000 lower-limb amputations annually in the United States alone. Matrix metalloproteinases (MMPs) play important roles in the pathology and in the repair of chronic wounds.

View Article and Find Full Text PDF

Background/aim: Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking.

Materials And Methods: The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) have numerous physiological functions and share a highly similar catalytic domain. Differential dynamical information on the closely related human MMP-8, -13, and -14 was integrated onto the benzoxazinone molecular template. An library of 28,099 benzoxazinones was generated and evaluated in the context of the molecular-dynamics information.

View Article and Find Full Text PDF

In order to address the dire need for new antibiotics to treat specific strains of drug resistant Gram-negative bacterial infections, a mixed ligand analog of the natural Acinetobacter baumannii selective siderophore, fimsbactin, was coupled to daptomycin, a Gram-positive only antibiotic. The resulting conjugate 11 has potent activity against multidrug resistant strains of A. baumannii both in vitro and in vivo.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-2 knockout (KO) mice show impaired neurological recovery after spinal cord injury (SCI), suggesting that this proteinase is critical to recovery processes. However, this finding in the KO has been confounded by a compensatory increase in MMP-9. We synthesized the thiirane mechanism-based inhibitor ND-378 and document that it is a potent (nanomolar) and selective slow-binding inhibitor of MMP-2 that does not inhibit the closely related MMP-9 and MMP-14.

View Article and Find Full Text PDF

The oxadiazole antibacterials target the bacterial cell wall and are bactericidal. We investigated the synergism of ND-421 with the commonly used β-lactams and non-β-lactam antibiotics by the checkerboard method and by time-kill assays. ND-421 synergizes well with β-lactam antibiotics, and it also exhibits a long postantibiotic effect (4.

View Article and Find Full Text PDF

We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity against Staphylococcus aureus.

View Article and Find Full Text PDF

Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple β-lactam combination meropenem-piperacillin-tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA subspecies N315 and 72 other clinical MRSA isolates in vitro and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents.

View Article and Find Full Text PDF

Cell death is involved in many pathological conditions, and there is a need for clinical and preclinical imaging agents that can target and report cell death. One of the best known biomarkers of cell death is exposure of the anionic phospholipid phosphatidylserine (PS) on the surface of dead and dying cells. Synthetic zinc(II)-bis(dipicolylamine) (Zn2BDPA) coordination complexes are known to selectively recognize PS-rich membranes and act as cell death molecular imaging agents.

View Article and Find Full Text PDF

SB-3CT is a potent and selective inhibitor of matrix metalloproteinase (MMP)-2 and -9, which has shown efficacy in an animal model of severe traumatic brain injury (TBI). However, SB-3CT is poorly water-soluble and is metabolized primarily to p-hydroxy SB-3CT (2), a more potent inhibitor than SB-3CT. We synthesized the O-phosphate prodrug (3) of compound 2 to enhance its water solubility by more than 2000-fold.

View Article and Find Full Text PDF

The control of Johne's disease requires the identification of Mycobacterium avium ssp. paratuberculosis (MAP)-positive herds. Boot swabs and liquid manure samples have been suggested as an easy-to-use alternative to sampling individual animals in order to diagnose subclinical Johne's disease at the herd level, but there is a need to evaluate performance of this approach in the field.

View Article and Find Full Text PDF