The mobility of actinides in natural water may be enhanced by colloid-mediated transport. In this context the reversibility of actinide colloid interaction is a key factor. Iron is an element that can generate colloids under conditions found in natural waters.
View Article and Find Full Text PDFEnviron Sci Technol
November 2002
The migration behavior of 241Am(III) in a sandy aquifer was studied under near-natural conditions by long-term column experiments of more than 1 year duration. Columns with 50 cm length and 5 cm in diameter were packed with aeolian quartz sand and equilibrated with two different groundwaters having an original dissolved organic carbon concentration (DOC) of 1.1 and 7.
View Article and Find Full Text PDFThe interaction kinetics of the Am(III) ion with aquatic humic colloids is investigated under near-natural conditions by column experiments with a sandy aquifer sample rich in humic substancesforthe appraisal of the migration behavior of Am. The association and dissociation kinetics of the Am ion onto and from humic colloids control the migration of colloid-borne Am. As the contact time between Am and humic colloids prior to introduction into a column is increased, the mobility of colloid-borne Am is enhanced and hence the recovery of Am in the effluent increases.
View Article and Find Full Text PDF