Tight junctions, paracellular permeability barriers that define epithelial cell polarity, play an essential role in transepithelial transport, cell-cell adhesion and lymphocyte transmigration. They are also important for the maintenance of innate immune defence and intestinal antigen uptake. Ammonium (NH4+) is elevated in the gastric aspirates of Helicobacter pylori-infected patients and has been implicated in the disruption of tight-junction functional integrity and the induction of gastric mucosal damage during H.
View Article and Find Full Text PDFGap junction intercellular communication (GJIC) plays a significant role in the vascular system. Regulation of GJIC is a dynamic process, with alterations in connexin (Cx) protein expression and post-translational modification as contributing mechanisms. We hypothesized that the endothelial autacoid nitric oxide (NO) would reduce dye coupling in human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFCircuit analyses of the principal cell compartment of frog skin ( Rana temporaria and R. esculenta) were made using microelectrode measurements under short-circuit conditions and with the aid of the Na(+) channel blocker amiloride. Under control conditions, intracellular potential ranged between -65 and -5 mV, and the conductances of the apical and basolateral membranes were related directly to the short-circuit current and inversely to the cellular potential.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2002
Transepithelial Cl(-) conductance (G(Cl)) in amphibian skin can be activated in several species by serosa positive potentials. Mitochondria-rich cells (MRC) or tight junctions (TJ) between the epithelial cells are possible sites for this pathway. The properties and the techniques used to investigate this pathway are reviewed in the present paper.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2003
The effect of xanthine derivatives on the voltage-activated Cl(-) conductance (G(Cl)) of amphibian skin was analyzed. 3-Isobutyl-1-methylxanthine (IBMX) and the recently synthesized xanthine derivatives 3,7-dimethyl-1-propyl xanthine (X-32) and 3,7-dimethyl-1-isobutyl xanthine (X-33), which lack inhibitory effects on phosphodiesterases in CHO and Calu-3 cells, increased voltage-activated G(Cl) without effect on baseline conductance at inactivating voltage. Half-maximal stimulation of G(Cl) occurred at 108 +/- 9 microM for X-32 and X-33 after apical or basolateral application.
View Article and Find Full Text PDF