Publications by authors named "Wolfram Mauser"

The Water-Energy-Food-Ecosystem (WEFE) nexus concept postulates that water, energy production, agriculture and ecosystems are closely interlinked. In transboundary river basins, different sectors and countries compete for shared water resources. In the Danube River Basin (DRB), possible expansion of agricultural irrigation is expected to intensify water competition in the WEFE nexus, however, trade-offs have not yet been quantified.

View Article and Find Full Text PDF

Where land-use change and particularly the expansion of cropland could potentially take place in the future is a central research question to investigate emerging trade-offs between food security, climate protection and biodiversity conservation. We provide consistent global datasets of land potentially suitable, cultivable and available for agricultural use for historic and future time periods from 1980 until 2100 under RCP2.6 and RCP8.

View Article and Find Full Text PDF

Water provision and distribution are subject to conflicts between users worldwide, with agriculture as a major driver of discords. Water sensitive ecosystems and their services are often impaired by man-made water shortage. Nevertheless, they are not sufficiently included in sustainability or risk assessments and neglected when it comes to distribution of available water resources.

View Article and Find Full Text PDF

The pressure on land resources continuously increases not only with the rising demand for agricultural commodities, but also with the growing need for action on global challenges, such as biodiversity loss or climate change, where land plays a crucial role. Land saving as a strategy, where agricultural productivity is increased to allow a reduction of required cropland while sustaining production volumes and meeting demand, could address this trade-off. With our interdisciplinary model-based study, we globally assess regional potentials of land saving and analyze resulting effects on agricultural production, prices and trade.

View Article and Find Full Text PDF

Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length.

View Article and Find Full Text PDF

Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws.

View Article and Find Full Text PDF

Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N.

View Article and Find Full Text PDF

With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases.

View Article and Find Full Text PDF

The pace of change in land use and cover in Ethiopia depends on three main factors that cause pressure on agriculture land: resettlement programmes, population growth and increasing agricultural investments. Gambella is one of the regions of Ethiopia that attracts large-scale agricultural investments that extensively drive land use and cover changes in the region. The aim of this study is to examine the rate, extent and distribution of various land use and cover changes in Gambella Regional State, Ethiopia, from 1987 to 2017.

View Article and Find Full Text PDF

Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit.

View Article and Find Full Text PDF

The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques.

View Article and Find Full Text PDF

Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions.

View Article and Find Full Text PDF

The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system'ssecond generation, AVIS-2, which is currently being operated.

View Article and Find Full Text PDF

Recently we proposed an extension to the traffic model of Aw, Rascle, and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse-lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady-state solutions of the model and their stability properties.

View Article and Find Full Text PDF