trying...
11101MCID_676f086566c932f78708ee2a 39381007 Wolfram Lorenzen[author] Lorenzen, Wolfram[Full Author Name] lorenzen, wolfram[Author] trying2...
trying...
3938100720241010
2352-3409572024DecData in briefData BriefUV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra for the two cyanobacterial metabolites anabaenopeptin A and anabaenopeptin B.11091411091411091410.1016/j.dib.2024.110914The UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra, as well as NMR and high resolution tandem mass spectrometry spectra were determined for two prominent secondary metabolites from cyanobacteria, namely anabaenopeptin A and anabaenopeptin B. The compounds were extracted from the cyanobacterium Planktothrix rubescens CBT929 and purified by flash chromatography and HPLC. Exact amounts of isolated compounds were assessed by quantitative 1H-NMR with internal calibrant ethyl 4-(dimethylamino)benzoate in DMSO‑d6 at 298 K with a recycle delay (d1) of 120 s. UV-vis absorbance spectra were recorded in methanol at room temperature. Molar extinction coefficients were determined at 278 nm as 4190 M-1 cm-1 and 2300 M-1 cm-1 in methanol for anabaenopeptin A and anabaenopeptin B, respectively. Circular dichroism spectra and secondary fragmentation mass spectra are also reported.© 2024 The Authors. Published by Elsevier Inc.SteinerTillTDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.SchanbacherFranziskaFInstitut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany.LorenzenWolframWSimris Biologics GmbH, Magnusstrasse 11, 12489 Berlin, Germany.EnkeHeikeHSimris Biologics GmbH, Magnusstrasse 11, 12489 Berlin, Germany.JanssenElisabeth M-LEMSwiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Düberndorf, Switzerland.NiedermeyerTimo H JTHJInstitut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany.GademannKarlKDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.engJournal Article20240915
NetherlandsData Brief1016549952352-3409CyanobacteriaMetabolitesQuantitative NMRUV–vis spectroscopy
202452320248122024922024109730202410972920241094412024915epublish39381007PMC1146048510.1016/j.dib.2024.110914S2352-3409(24)00877-1Steiner T., Schanbacher F., Lorenzen W., Enke H., Janssen E.M.-L., Niedermeyer T.H.J., Gademann K. UV–vis absorbance spectra, molar extinction coefficients and circular dichroism spectra for the two cyanobacterial metabolites anabaenopeptin A and anabaenoepeptin B. Data Set. 2024 https://zenodo.org/records/11203432Beversdorf L.J., Weirich C.A., Bartlett S.L., Miller T.R. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins (Basel) 2017;9 doi: 10.3390/toxins9020062.10.3390/toxins9020062Miller T.R., Bartlett S.L., Weirich C.A., Hernandez J. Automated subdaily sampling of cyanobacterial toxins on a buoy reveals new temporal patterns in toxin dynamics. Environ. Sci. Technol. 2019;53:5661–5670. doi: 10.1021/acs.est.9b00257.10.1021/acs.est.9b0025731038305Janssen E.M.-L., Jones M.R., Pinto E., Dörr F., Torres M.A., Rios Jacinavicius F., Mazur-Marzec H., Szubert K., Konkel R., Tartaglione L., Dell'Aversano C., Miglione A., McCarron P., Beach D.G., Miles C.O., Fewer D.P., Sivonen K., Jokela J., Wahlsten M., Niedermeyer T.H.J., Schanbacher F., Leão P., Preto M., D'Agostino P.M., Baunach M., Dittmann E., Reher R. S75 | CyanoMetDB | Comprehensive database of secondary metabolites from cyanobacteria. Data Set. 2023 doi: 10.5281/ZENODO.7922070.10.5281/ZENODO.792207033765498Ferrinho S., Connaris H., Mouncey N.J., Goss R.J.M. Compendium of metabolomic and genomic datasets for cyanobacteria: mined the gap. Water Res. 2024;256 doi: 10.1016/j.watres.2024.121492.10.1016/j.watres.2024.12149238593604Itou Y., Suzuki S., Ishida K., Murakami M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595) Bioorg. Med. Chem. Lett. 1999;9:1243–1246. doi: 10.1016/S0960-894X(99)00191-2.10.1016/S0960-894X(99)00191-210340607Kodani S., Suzuki S., Ishida K., Murakami M. Five new cyanobacterial peptides from water bloom materials of lake Teganuma (Japan) FEMS Microbiol. Lett. 1999;178:343–348. doi: 10.1111/j.1574-6968.1999.tb08697.x.10.1111/j.1574-6968.1999.tb08697.xMurakami M., Suzuki S., Itou Y., Kodani S., Ishida K. New anabaenopeptins, carboxypeptidaze-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod. 2000;63:1280–1282. doi: 10.1021/np000120k.10.1021/np000120k11000037Walther T., Renner S., Waldmann H., Arndt H.-D. Synthesis and structure-activity correlation of brunsvicamide-inspired cyclopeptide collection. ChemBioChem. 2009;10:1153–1162. doi: 10.1002/cbic.200900035.10.1002/cbic.20090003519360807Schreuder H., Liesum A., Lönze P., Stump H., Hoffmann H., Schiell M., Kurz M., Toti L., Bauer A., Kallus C., Klemke-Jahn C., Czech J., Kramer D., Enke H., Niedermeyer T.H.J., Morrison V., Kumar V., Brönstrup M. Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) Sci. Rep. 2016;6 doi: 10.1038/srep32958.10.1038/srep32958PMC501510627604544Blom J.F., Robinson J.A., Jüttner F. High grazer toxicity of [D-Asp3,(E)-Dhb7]microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon. 2001;39:1923–1932. doi: 10.1016/S0041-0101(01)00178-7.10.1016/S0041-0101(01)00178-711600156Harada K.-I., Matsuura K., Suzuki M., Watanabe M.F., Oishi S., Dahlem A.M., Beasley V.R., Carmichael W.W. Isolation and characterization of the minor components associated with mycrocystins LR and RR in the cyanobacterium (blue-green algae) Toxicon. 1990;28:55–64. doi: 10.1016/0041-0101(90)90006-S.10.1016/0041-0101(90)90006-S2109908Honkanen R.E., Zwiller J., Moore R.E., Daily S.L., Khatra B.S., Dukelow M., Boynton A.L. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. Biol. Chem. 1990;265:19401–19404. doi: 10.1016/S0021-9258(17)45384-1.10.1016/S0021-9258(17)45384-12174036Sano T., Kaya K. Two new (E)-2-amino-2-butenoic acid (Dhb)-containing microcystins isolated from Oscillatoria agardhii. Tetrahedron. 1998;54:463–470. doi: 10.1016/S0040-4020(97)10291-5.10.1016/S0040-4020(97)10291-5Weber M., Hellriegel C., Rück A., Sauermoser R., Wüthrich J. Using high-performance quantitative NMR (HP-qNMR®) for certifying traceable and highly accurate purity values of organic reference materials with uncertainties <0.1 % Accredit. Qual. Assur. 2013;18:91–98. doi: 10.1007/s00769-012-0944-9.10.1007/s00769-012-0944-9Harada K.-I., Fujii K., Shimada T., Suzuki M., Sano H., Adachi K., Carmichael W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995;36:1511–1514. doi: 10.1016/0040-4039(95)00073-L.10.1016/0040-4039(95)00073-LAndersen R.A. Elsevier Academic Press; 2005. Algal Culturing Techniques.
324640612021081020210810
1520-60258362020Jun26Journal of natural productsJ Nat ProdPrecursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins.196019701960-197010.1021/acs.jnatprod.0c00251Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters.MoschnyJuliaJDepartment of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany.Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.LorenzenWolframWCyano Biotech GmbH, 12489 Berlin, Germany.HilferAlexandraACyano Biotech GmbH, 12489 Berlin, Germany.EckenstalerRobertRDepartment of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.JahnsStefanSCyano Biotech GmbH, 12489 Berlin, Germany.EnkeHeikeHCyano Biotech GmbH, 12489 Berlin, Germany.EnkeDanDCyano Biotech GmbH, 12489 Berlin, Germany.SchneiderPhilippPInterfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.BenndorfRalf ARADepartment of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.NiedermeyerTimo H JTHJ0000-0003-1779-7899Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany.Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20200528
United StatesJ Nat Prod79068820163-38640Amino Acids0Antibiotics, Antineoplastic0Azides0Fluorescent Dyes0Liver-Specific Organic Anion Transporter 10Microcystins0SLCO1B1 protein, human0SLCO1B3 protein, human0Solute Carrier Organic Anion Transporter Family Member 1B3IMAmino AcidschemistryAntibiotics, AntineoplasticchemistrypharmacologyAzideschemistryCell Line, TumorCyanobacteriachemistrymetabolismFluorescent DyesHEK293 CellsHumansLiver-Specific Organic Anion Transporter 1drug effectsMicrocystinsbiosynthesischemistryMicrocystischemistrymetabolismMolecular StructureSolute Carrier Organic Anion Transporter Family Member 1B3drug effects
202052960202181160202052960ppublish3246406110.1021/acs.jnatprod.0c00251
267476492016060720161126
0006-3002186132016MarBiochimica et biophysica actaBiochim Biophys ActaIdentification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum.239248239-4810.1016/j.bbalip.2015.12.023S1388-1981(15)00245-0Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1.Copyright © 2016 Elsevier B.V. All rights reserved.BarkaFrederikFPlant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany.AngstenbergerMaxMPlant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany.AhrendtTilmanTMerck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany.LorenzenWolframWMerck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany.BodeHelge BHBMerck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.BüchelClaudiaCPlant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Electronic address: c.buechel@bio.uni-frankfurt.de.engJournal ArticleResearch Support, Non-U.S. Gov't20151230
NetherlandsBiochim Biophys Acta02175130006-30020RNA, Antisense0Recombinant Proteins0TriglyceridesEC 3.1.1.3LipaseIMAmino Acid MotifsAmino Acid SequenceDiatomsenzymologygeneticsGene Expression Regulation, EnzymologicGene Knockdown TechniquesGenotypeHydrolysisKineticsLipasechemistrygeneticsmetabolismMolecular Sequence DataPhenotypePhylogenyRNA, AntisensegeneticsmetabolismRecombinant ProteinsmetabolismTriglyceridesmetabolismAntisenseLipaseLipidsPolyunsaturated fatty acids
2015330201512172015122920161106020161106020166960ppublish2674764910.1016/j.bbalip.2015.12.023S1388-1981(15)00245-0
253844832015022520181113
1098-553019722015JanJournal of bacteriologyJ BacteriolNonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol.382391382-9110.1128/JB.02383-14Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD. NADH is reoxidized by reducing propionaldehyde to propanol. The potential gene cluster coding for the responsible enzymes includes genes coding for shell proteins of bacterial microcompartments. Electron microscopy revealed the presence of microcompartments as well as storage granules in cells grown on 1,2-PD. Gene clusters coding for the 1,2-PD pathway can be found in other acetogens as well, but the distribution shows no relation to the phylogeny of the organisms.Copyright © 2015, American Society for Microbiology. All Rights Reserved.SchuchmannKaiKMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.SchmidtSilkeSMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.Martinez LopezAntonioAMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.KaberlineChristinaCMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.KuhnsMartinMMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.LorenzenWolframWMerck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.BodeHelge BHBMerck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe University, Frankfurt am Main, Germany.JoosFriederikeFMax-Planck-Institut für Biophysik, Strukturbiologie, Frankfurt am Main, Germany.MüllerVolkerVMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany vmueller@bio.uni-frankfurt.de.engJournal ArticleResearch Support, Non-U.S. Gov't20141110
United StatesJ Bacteriol2985120R0021-91936DC9Q167V3Propylene GlycolIMAcetobacteriumgrowth & developmentmetabolismultrastructurePropylene Glycolmetabolism
20141112602014111260201522660201571ppublish25384483PMC427258410.1128/JB.02383-14JB.02383-14Drake HL, Gößner AS, Daniel SL. 2008. Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. doi:10.1196/annals.1419.016.10.1196/annals.1419.01618378590Müller V. 2003. Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353. doi:10.1128/AEM.69.11.6345-6353.2003.10.1128/AEM.69.11.6345-6353.2003PMC26230714602585Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898. doi:10.1016/j.bbapap.2008.08.012.10.1016/j.bbapap.2008.08.012PMC264678618801467Wood HG, Ragsdale SW, Pezacka E. 1986. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362. doi:10.1111/j.1574-6968.1986.tb01865.x.10.1111/j.1574-6968.1986.tb01865.xHugenholtz J, Ljungdahl LG. 1990. Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 87:383–389. doi:10.1111/j.1574-6968.1990.tb04941.x.10.1111/j.1574-6968.1990.tb04941.x2094291Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V. 2012. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439. doi:10.1371/journal.pone.0033439.10.1371/journal.pone.0033439PMC331556622479398Biegel E, Müller V. 2010. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107:18138–18142. doi:10.1073/pnas.1010318107.10.1073/pnas.1010318107PMC296420620921383Schuchmann K, Müller V. 2012. A bacterial electron bifurcating hydrogenase. J Biol Chem 287:31165–31171. doi:10.1074/jbc.M112.395038.10.1074/jbc.M112.395038PMC343894822810230Müller V, Aufurth S, Rahlfs S. 2001. The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120. doi:10.1016/S0005-2728(00)00281-4.10.1016/S0005-2728(00)00281-411248193Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Müller DJ, Meier T, Müller V. 2008. An intermediate step in the evolution of ATPases: a hybrid F1FO rotor in a bacterial Na+ F1FO ATP synthase. FEBS J 275:1999–2007. doi:10.1111/j.1742-4658.2008.06354.x.10.1111/j.1742-4658.2008.06354.x18355313Seifritz C, Daniel SL, Gössner A, Drake HL. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013.PMC2069818253688Bache R, Pfennig N. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261. doi:10.1007/BF00459530.10.1007/BF00459530Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V. 2007. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: indications for a Rnf-type NADH dehydrogenase as coupling site. J Bacteriol 189:8145–8153. doi:10.1128/JB.01017-07.10.1128/JB.01017-07PMC216866417873051Hess V, Gonzalez JM, Parthasarathy A, Buckel W, Muller V. 2013. Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation. Appl Environ Microbiol 79:1942–1947. doi:10.1128/AEM.03604-12.10.1128/AEM.03604-12PMC359222023315745Hess V, Vitt S, Müller V. 2011. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. J Bacteriol 193:971–978. doi:10.1128/JB.01126-10.10.1128/JB.01126-10PMC302869121131487Bertsch J, Parthasarathy A, Buckel W, Müller V. 2013. An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 288:11304–11311. doi:10.1074/jbc.M112.444919.10.1074/jbc.M112.444919PMC363089223479729Eichler B, Schink B. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152. doi:10.1007/BF00454917.10.1007/BF00454917Obradors N, Badia J, Baldoma L, Aguilar J. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella Typhimurium. J Bacteriol 170:2159–2162.PMC2111013283105Heise R, Müller V, Gottschalk G. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478.PMC2103862507527Heise R, Müller V, Gottschalk G. 1992. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–557. doi:10.1111/j.1432-1033.1992.tb16959.x.10.1111/j.1432-1033.1992.tb16959.x1534543Bryant MP. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328.4565349Hungate RE. 1969. A roll tube methode for cultivation of strict anaerobes, p 117–132. In Norris JR, Ribbons DW (ed), Methods in microbiology, vol 3b Academic Press, New York, NY.Schmidt K, Liaaen-Jensen S, Schlegel HG. 1963. Die carotinoide der Thiorhodaceae. Arch Mikrobiol 46:117–126. doi:10.1007/BF00408204.10.1007/BF0040820414044829Schuchmann K, Müller V. 2013. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1385. doi:10.1126/science.1244758.10.1126/science.124475824337298Hess V, Schuchmann K, Müller V. 2013. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502. doi:10.1074/jbc.M113.510255.10.1074/jbc.M113.510255PMC381474624045950Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404.10.1093/bioinformatics/btm40417846036Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699. doi:10.1093/nar/gkq313.10.1093/nar/gkq313PMC289609020439314Zdobnov EM, Apweiler R. 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848. doi:10.1093/bioinformatics/17.9.847.10.1093/bioinformatics/17.9.84711590104Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteine-dye-binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3942051Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975.PMC10362310498708Sampson EM, Johnson CL, Bobik TA. 2005. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiology 151:1169–1177. doi:10.1099/mic.0.27755-0.10.1099/mic.0.27755-015817784Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810. doi:10.1128/JB.185.9.2802-2810.2003.10.1128/JB.185.9.2802-2810.2003PMC15440512700259Cheng S, Fan C, Sinha S, Bobik TA. 2012. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica. PLoS One 7:e47144. doi:10.1371/journal.pone.0047144.10.1371/journal.pone.0047144PMC347192723077559Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR. 1997. Propanediol utilization genes (pdu) of Salmonella Typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639.PMC1795899352910Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361. doi:10.1007/s00203-003-0601-0.10.1007/s00203-003-0601-014504694Rondon MR, Escalante-Semerena JC. 1996. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella Typhimurium LT2. J Bacteriol 178:2196–2203.PMC1779258636018Rondon MR, Escalante-Semerena JC. 1992. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella Typhimurium. J Bacteriol 174:2267–2272.PMC2058471313000Dilling S, Imkamp F, Schmidt S, Müller V. 2007. Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 73:3630–3636. doi:10.1128/AEM.02060-06.10.1128/AEM.02060-06PMC193270717416687Jeter RM. 1990. Cobalamin-dependent 1,2-propanediol utilization by Salmonella Typhimurium. J Gen Microbiol 136:887–896. doi:10.1099/00221287-136-5-887.10.1099/00221287-136-5-8872166132Liu Y, Leal NA, Sampson EM, Johnson CL, Havemann GD, Bobik TA. 2007. PduL is an evolutionarily distinct phosphotransacylase involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. J Bacteriol 189:1589–1596. doi:10.1128/JB.01151-06.10.1128/JB.01151-06PMC185577117158662Sampson EM, Bobik TA. 2008. Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 190:2966–2971. doi:10.1128/JB.01925-07.10.1128/JB.01925-07PMC229323218296526Tocheva EI, Matson EG, Cheng SN, Chen WG, Leadbetter JR, Jensen GJ. 2014. Structure and expression of propanediol utilization microcompartments in Acetonema longum. J Bacteriol 196:1651–1658. doi:10.1128/JB.00049-14.10.1128/JB.00049-14PMC399332124532773Anantharaman V, Aravind L. 2005. MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Bioinformatics 21:2805–2811. doi:10.1093/bioinformatics/bti418.10.1093/bioinformatics/bti41815814558Buschhorn H, Dürre P, Gottschalk G. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840.PMC20295916347978Toraya T, Honda S, Fukui S. 1979. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. J Bacteriol 139:39–47.PMC216824378959Balch WE, Schoberth S, Tanner RS, Wolfe RS. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing, anaerobic bacteria. Int J Syst Bact 27:355–361. doi:10.1099/00207713-27-4-355.10.1099/00207713-27-4-355Kane MD, Breznak JA. 1991. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98. doi:10.1007/BF00290979.10.1007/BF002909791723588Liou JS, Balkwill DL, Drake GR, Tanner RS. 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0.10.1099/ijs.0.63482-016166714Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL. 2000. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50(Part 2):537–546.10758858Genthner BR, Davis CL, Bryant MP. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 42:12–19.PMC2439536791591
253324322015101920211021
1539-726255122014DecJournal of lipid researchJ Lipid ResA comprehensive insight into the lipid composition of Myxococcus xanthus by UPLC-ESI-MS.262026332620-3310.1194/jlr.M054593Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M. xanthus, a lipid species previously found only in eukaryotes.Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.LorenzenWolframWMerck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany.BozhüyükKenan A JKAMerck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany.CortinaNiña SNSCluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany.BodeHelge BHBMerck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20141020
United StatesJ Lipid Res03766060022-22750Bacterial Proteins0LipidsIMBacterial ProteinsgeneticsChromatography, High Pressure LiquidChromatography, Reverse-PhaseDatabases, ChemicalGas Chromatography-Mass SpectrometryLipid MetabolismLipidsanalysischemistryMetabolomicsmethodsMolecular StructureMutationMyxococcus xanthusmetabolismSpectrometry, Mass, Electrospray IonizationTandem Mass Spectrometryceramide phosphoinositolselectrospray ionization-mass spectrometryether lipidslipid profileslipidomicsmyxobacteriareversed phaseultra-performance liquid chromatography
2014102260201410226020151020602015121ppublish25332432PMC424245410.1194/jlr.M054593S0022-2275(20)36701-8Kaiser D. 2008. Myxococcus—from single-cell polarity to complex multicellular patterns. Annu. Rev. Genet. 42: 109–130.18605899Weissman K. J., Müller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276–1295.20520915Kearns D. B., Shimkets L. J. 2001. Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol. 9: 126–129.11239790Ring M. W., Schwär G., Thiel V., Dickschat J. S., Kroppenstedt R. M., Schulz S., Bode H. B. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J. Biol. Chem. 281: 36691–36700.16990257Bhat S., Ahrendt T., Dauth C., Bode H. B., Shimkets L. J. 2014. Two lipid signals guide fruiting body development of Myxococcus xanthus. MBio. 5: e00939–e009313.PMC395052624520059Fautz E., Rosenfelder G., Grotjahn L. 1979. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.PMC216725118159Bode H. B., Ring M. W., Kaiser D., David A. C., Kroppenstedt R. M., Schwär G. 2006. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation. J. Bacteriol. 188: 5632–5634.PMC154002716855254Ring M. W., Bode E., Schwär G., Bode H. B. 2009. Functional analysis of desaturases from the myxobacterium Myxococcus xanthus. FEMS Microbiol. Lett. 296: 124–130.19459946Ring M. W., Schwär G., Bode H. B. 2009. Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria. ChemBioChem. 10: 2003–2010.19575369Hoiczyk E., Ring M. W., McHugh C. A., Schwär G., Bode E., Krug D., Altmeyer M. O., Lu J. Z., Bode H. B. 2009. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol. Microbiol. 74: 497–517.PMC287717019788540Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ. Microbiol. 8: 1935–1949.17014493Lorenzen W., Ahrendt T., Bozhüyük K. A. J., Bode H. B. 2014. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat. Chem. Biol. 10: 425–427.24814673Caillon E., Lubochinsky B., Rigomier D. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351.PMC2217846402494Kleinig H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I. Isolation and composition. Biochim. Biophys. Acta. 274: 489–498.4340261Orndorff P. E., Dworkin M. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927.PMC2937056767694Fuchs B., Schiller J. 2009. Application of MALDI-TOF mass spectrometry in lipidomics. Eur. J. Lipid Sci. Technol. 111: 83–98.Han X., Yang K., Gross R. W. 2012. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31: 134–178.PMC325900621755525Furey A., Moriarty M., Bane V., Kinsella B., Lehane M. 2013. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 115: 104–122.24054567Shan L., Jaffe K., Li S., Davis L. 2008. Quantitative determination of lysophosphatidic acid by LC/ESI/MS/MS employing a reversed phase HPLC column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 864: 22–28.18262478Hutchins P. M., Barkley R. M., Murphy R. C. 2008. Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J. Lipid Res. 49: 804–813.PMC236709718223242Rütters H., Sass H., Cypionka H., Rullkötter J. 2001. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol. 176: 435–442.11734887Bligh E. G., Dyer W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.13671378Bode H. B., Ring M. W., Schwär G., Kroppenstedt R. M., Kaiser D., Müller R. 2006. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J. Bacteriol. 188: 6524–6528.PMC159549916952943Lipid Maps: Lipidomics Gateway. Accessed 26 September 2014 at http://www.lipidmaps.org.Ejsing C. S. 2007. Molecular Characterization of the Lipidome by Mass Spectrometry. Doctoral Thesis. Technische Universität Dresden, Dresden, Germany.Blaas N., Humpf H. 2013. Structural profiling and quantitation of glycosyl inositol phosphoceramides in plants with Fourier transform mass spectrometry. J. Agric. Food Chem. 61: 4257–4269.23573790Elkhayat E. S., Mohamed G. A., Ibrahim S. R. M. 2012. Activity and structure elucidation of ceramides. Curr. Bioact. Compd. 8: 370–409.Scherer M., Schmitz G., Liebisch G. 2010. Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal. Chem. 82: 8794–8799.20945919Zemski Berry K. A., Murphy R. C. 2004. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J. Am. Soc. Mass Spectrom. 15: 1499–1508.15465363Hsu F. F., Turk J., Rhoades E. R., Russell D. G., Shi Y., Groisman E. A. 2005. Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 16: 491–504.15792718Smith P. B., Snyder A. P., Harden C. S. 1995. Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal. Chem. 67: 1824–1830.9306733Oursel D., Loutelier-Bourhis C., Orange N., Chevalier S., Norris V., Lange C. M. 2007. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass Spectrom. 21: 1721–1728.17477452Murphy R. C., James P. F., McAnoy A. M., Krank J., Duchoslav E., Barkley R. M. 2007. Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal. Biochem. 366: 59–70.PMC203449717442253Tsui F. C., Ojcius D. M., Hubbell W. L. 1986. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 49: 459–468.PMC13294853955180Marsh D. 1990. CRC Handbook of Lipid Bilayers. CRC Press, Boca Raton, FL.Kaiser D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA. 76: 5952–5956.PMC41177142906Murphy R. C., Axelsen P. H. 2011. Mass spectrometric analysis of long-chain lipids. Mass Spectrom. Rev. 30: 579–599.PMC311708321656842Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ. Microbiol. 8: 1935–1949.17014493Becker G. W., Lester R. L. 1980. Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J. Bacteriol. 142: 747–754.PMC2940876991492Hackett J. A., Brennan P. J. 1977. The isolation and biosynthesis of the ceramide-phosphoinositol of Aspergillus niger. FEBS Lett. 74: 259–263.849793Smith T. K., Bütikofer P. 2010. Lipid metabolism in Trypanosoma brucei. Mol. Biochem. Parasitol. 172: 66–79.PMC374493820382188Hsu F. F., Turk J., Zhang K., Beverley S. M. 2007. Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 18: 1591–1604.PMC206576217627842Kaul K., Lester R. L. 1975. Characterization of inositol-containing phosphosphingolipids from tobacco leaves: isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide. Plant Physiol. 55: 120–129.PMC54156516659016Eckau H., Dill D., Budzikiewicz H. 1984. Neuartige ceramide aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. C. 39: 1–9.Stein J., Budzikiewicz H. 1988. Ceramid-1-phosphoethanolamine aus Myxococcus stipitatus. Z. Naturforsch. B. 43: 1063–1067.Keck M., Gisch N., Moll H., Vorhölter F., Gerth K., Kahmann U., Lissel M., Lindner B., Niehaus K., Holst O. 2011. Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J. Biol. Chem. 286: 12850–12859.PMC307563221321121Levine T. P., Wiggins C. A., Munro S. 2000. Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol. Biol. Cell. 11: 2267–2281.PMC1491810888667Curtis P. D., Shimkets L. J. Chapter IV: Structure and Metabolism (subchapter) In Myxobacteria: Multicellularity and Differentiation. D. E. Whitworth, editor. ASM Press, Washington, DC. 248–258.Buré C., Cacas J., Mongrand S., Schmitter J. 2014. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal. Bioanal. Chem. 406: 995–1010.23887274Zhong W., Jeffries M. W., Georgopapadakou N. H. 2000. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother. 44: 651–653.PMC8974110681333Rhome R., del Poeta M. D., del Poeta M. 2009. Lipid signaling in pathogenic fungi. Annu. Rev. Microbiol. 63: 119–131.PMC512506819450140
248146732014071520211021
1552-44691062014JunNature chemical biologyNat Chem BiolA multifunctional enzyme is involved in bacterial ether lipid biosynthesis.425427425-710.1038/nchembio.1526Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.LorenzenWolframWMerck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.AhrendtTilmanTMerck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.BozhüyükKenan A JKAMerck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.BodeHelge BHBMerck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.engGENBANKKJ633122KJ633123KJ633124KJ633125Journal ArticleResearch Support, Non-U.S. Gov't20140511
United StatesNat Chem Biol1012319761552-44500Ethers0Lipids0Multifunctional EnzymesIMCatalytic DomainEthersGenes, BacterialGenome, BacterialLipidsbiosynthesischemistryMolecular Sequence DataMultifunctional EnzymesgeneticsphysiologyMultigene FamilyMyxococcus xanthusenzymologygeneticsphysiologySpores, BacterialphysiologyStigmatella aurantiacaenzymologygeneticsphysiology
20139142014414201451360201451360201471660ppublish2481467310.1038/nchembio.1526nchembio.1526J Am Chem Soc. 2010 Aug 11;132(31):10628-920230003Can J Biochem Physiol. 1959 Aug;37(8):911-713671378Nature. 1970 Aug 15;227(5259):680-55432063Anal Biochem. 1984 Apr;138(1):141-36731838J Bacteriol. 2004 Jul;186(13):4361-815205438J Bacteriol. 2007 Dec;189(24):8793-80017905977Biochimie. 2013 Jan;95(1):59-6522771767Chem Biol. 2004 Feb;11(2):195-20115123281Mol Microbiol. 2009 Oct;74(2):497-51719788540Chem Biol. 1996 Nov;3(11):923-368939709J Biol Chem. 2006 Dec 1;281(48):36691-70016990257J Bacteriol. 1951 Sep;62(3):293-30014888646Food Chem. 2013 Jan 15;136(2):464-7123122085Folia Microbiol (Praha). 2012 Sep;57(5):463-7222763737Environ Microbiol. 2006 Nov;8(11):1935-4917014493Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1524-3019502347J Bacteriol. 1998 Mar;180(6):1425-309515909Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13990-411717456Biochem Cell Biol. 1990 Jan;68(1):225-302350489Angew Chem Int Ed Engl. 2012 Nov 26;51(48):12086-923097192Conserv Biol. 2013 Feb;27(1):197-20923110546J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jan 5;814(1):155-6115607720J Bacteriol. 1978 Feb;133(2):763-8415048J Biol Chem. 2002 Sep 6;277(36):32768-7412084727Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17790-524127586Chem Phys Lipids. 2011 Jul;164(5):315-4021635876Mol Plant. 2013 Mar;6(2):246-923253604BMC Bioinformatics. 2010 Jan 27;11:5720105319Biochim Biophys Acta. 2011 Mar;1811(3):186-9321195206Appl Environ Microbiol. 2000 Mar;66(3):884-910698746FEBS Lett. 1976 Mar 15;63(1):107-111261671
230971922013080720121121
1521-377351482012Nov26Angewandte Chemie (International ed. in English)Angew Chem Int Ed EnglReciprocal cross talk between fatty acid and antibiotic biosynthesis in a nematode symbiont.120861208912086-910.1002/anie.201205384BrachmannAlexander OAOMolekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.ReimerDanielaDLorenzenWolframWAugusto AlonsoEduardoEKoppYannickYPielJörnJBodeHelge BHBengJournal ArticleResearch Support, Non-U.S. Gov't20121024
GermanyAngew Chem Int Ed Engl03705431433-78510Anti-Bacterial Agents0Fatty AcidsIMAnimalsAnti-Bacterial AgentsbiosynthesischemistryFatty AcidsbiosynthesischemistryNematodametabolism
2012782012102660201210266020138860ppublish2309719210.1002/anie.201205384
229542272012100220220410
1754-6834512012Sep06Biotechnology for biofuelsBiotechnol BiofuelsCytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae.6565The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol.Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose.A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.BratDawidDInstitute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str, 9, 60438, Frankfurt am Main, Germany. e.boles@bio.uni-frankfurt.de.WeberChristianCLorenzenWolframWBodeHelge BHBBolesEckhardEengJournal Article20120906
EnglandBiotechnol Biofuels1013169351754-6834
20127162012830201298602012986020129861201296epublish22954227PMC347645110.1186/1754-6834-5-651754-6834-5-65Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87:1303–1315. doi: 10.1007/s00253-010-2707-z.10.1007/s00253-010-2707-z20535464Dickinson JR, Harrison SJ, Hewlins MJ. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem. 1998;273:25751–25756. doi: 10.1074/jbc.273.40.25751.10.1074/jbc.273.40.257519748245Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–2266. doi: 10.1128/AEM.02625-07.10.1128/AEM.02625-07PMC229316018281432Ehrlich F. Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe. Berichte Deutsch Chem Gesellschaft. 1907;40:1021–1047. doi: 10.1002/cber.190704001155.10.1002/cber.190704001155Velasco JA, Cansado J, Pena MC, Kawakami T, Laborda J, Notario V. Cloning of the dihydroxyacid dehydratase-encoding gene (ILV3) from Saccharomyces cerevisiae. Gene. 1993;137:179–185. doi: 10.1016/0378-1119(93)90004-M.10.1016/0378-1119(93)90004-M8299945Kispal G, Steiner H, Court DA, Rolinski B, Lill R. Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem. 1996;271:24458–24464. doi: 10.1074/jbc.271.40.24458.10.1074/jbc.271.40.244588798704Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–89. doi: 10.1038/nature06450.10.1038/nature0645018172501Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol. 2011;90:1681–1690. doi: 10.1007/s00253-011-3173-y.10.1007/s00253-011-3173-yPMC309465721547458Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich Pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91:577–589. doi: 10.1007/s00253-011-3280-9.10.1007/s00253-011-3280-921533914Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87:1045–1055. doi: 10.1007/s00253-010-2522-6.10.1007/s00253-010-2522-6PMC288611820376637Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels. 2011;4:21. doi: 10.1186/1754-6834-4-21.10.1186/1754-6834-4-21PMC316248621798060Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol. 2012;159:32–37. doi: 10.1016/j.jbiotec.2012.01.022.10.1016/j.jbiotec.2012.01.02222342368Ryan ED, Kohlhaw GB. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974;120:631–637.PMC2458214616942Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res. 2005;5:757–766. doi: 10.1016/j.femsyr.2005.02.005.10.1016/j.femsyr.2005.02.00515851104Omura F. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol. 2008;78:503–513. doi: 10.1007/s00253-007-1333-x.10.1007/s00253-007-1333-x18193418Falco SC, Dumas KS, Livak KJ. Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res. 1985;13:4011–4027. doi: 10.1093/nar/13.11.4011.10.1093/nar/13.11.4011PMC3412932989783Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592:63–77. doi: 10.1016/S0167-4889(02)00265-3.10.1016/S0167-4889(02)00265-312191769Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng. 2012. In press.22543927Dickinson JR, Salgado LE, Hewlins MJ. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem. 2003;278:8028–8034. doi: 10.1074/jbc.M211914200.10.1074/jbc.M21191420012499363Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–644. doi: 10.1016/j.cell.2009.08.005.10.1016/j.cell.2009.08.005PMC409946919703392Mitoprot. Prediction of mitochondrial targeting sequences. http://ihg.gsf.de/ihg/mitoprot.html.Wiedemann B, Boles E. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043–2050. doi: 10.1128/AEM.02395-07.10.1128/AEM.02395-07PMC229258718263741Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:2304–2311. doi: 10.1128/AEM.02522-08.10.1128/AEM.02522-08PMC267523319218403Hohmann S, Cederberg H. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem. 1990;188:615–621. doi: 10.1111/j.1432-1033.1990.tb15442.x.10.1111/j.1432-1033.1990.tb15442.x2185016Hohmann S. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet. 1991;20:373–378. doi: 10.1007/BF00317064.10.1007/BF003170641807827Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol. 1991;173:7963–7969.PMC2125911744053Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem. 1997;272:26871–26878. doi: 10.1074/jbc.272.43.26871.10.1074/jbc.272.43.268719341119Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69:4534–4541. doi: 10.1128/AEM.69.8.4534-4541.2003.10.1128/AEM.69.8.4534-4541.2003PMC16914012902239Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71:3276–3284. doi: 10.1128/AEM.71.6.3276-3284.2005.10.1128/AEM.71.6.3276-3284.2005PMC115186215933030de la Plaza M, Fernandez De Palencia P, Pelaez C, Requena T. Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett. 2004;238:367–374.15358422Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905–2915. doi: 10.1128/AEM.03034-10.10.1128/AEM.03034-10PMC312640521398484Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B. Kunji ER. Martinou JC: Identification and functional expression of the mitochondrial pyruvate carrier. Science; 2012.22628554Park HS, Xing R, Whitman WB. Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. Biochim Biophys Acta. 1995;1245:366–370. doi: 10.1016/0304-4165(95)00103-4.10.1016/0304-4165(95)00103-48541313Gjermansen C, Nilsson-Tillgren T, Petersen JG, Kielland-Brandt MC, Sigsgaard P, Holmberg S. Towards diacetyl-less brewers' yeast. influence of ilv2 and ilv5 mutations. J Basic Microbiol. 1988;28:175–183. doi: 10.1002/jobm.3620280304.10.1002/jobm.36202803043057172Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry. 1999;38:5222–5231. doi: 10.1021/bi983013m.10.1021/bi983013m10213630Zelenaya-Troitskaya O, Perlman PS, Butow RA. An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J. 1995;14:3268–3276.PMC3943897621838Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem. 2011;286:41205–41216. doi: 10.1074/jbc.M111.296152.10.1074/jbc.M111.296152PMC330883421987576Schilke B, Voisine C, Beinert H, Craig E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1999;96:10206–10211. doi: 10.1073/pnas.96.18.10206.10.1073/pnas.96.18.10206PMC1786710468587Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009;460:831–838. doi: 10.1038/nature08301.10.1038/nature0830119675643Kispal G, Csere P, Prohl C, Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999;18:3981–3989. doi: 10.1093/emboj/18.14.3981.10.1093/emboj/18.14.3981PMC117147410406803Mobyle portal - Institut Pasteur. http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::cai.Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res. 2007;7:604–620. doi: 10.1111/j.1567-1364.2007.00220.x.10.1111/j.1567-1364.2007.00220.x17419774Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85:651–657. doi: 10.1007/s00253-009-2085-6.10.1007/s00253-009-2085-6PMC280248919609521Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast. 1996;12:247–257. doi: 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I.10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I8904337Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast. 2001;18:19–32. doi: 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5.10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-511124698Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13:345–352. doi: 10.1016/j.ymben.2011.02.004.10.1016/j.ymben.2011.02.00421515217Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519.10.1093/nar/24.13.2519PMC1459758692690Carter Z, Delneri D. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast. 2010;27:765–775. doi: 10.1002/yea.1774.10.1002/yea.177420641014Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol. 2003;69:4144–4150. doi: 10.1128/AEM.69.7.4144-4150.2003.10.1128/AEM.69.7.4144-4150.2003PMC16513712839792Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 2006;40:73–78. doi: 10.2144/000112040.10.2144/00011204016454043Zimmermann FK. Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisiae. Mutation Research/Environmental Mutagenesis and Related Subjects. 1975;31:71–86. doi: 10.1016/0165-1161(75)90069-2.10.1016/0165-1161(75)90069-2235086Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988;16:6127–6145. doi: 10.1093/nar/16.13.6127.10.1093/nar/16.13.6127PMC3368523041370Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96.12073338Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1–4.17401330Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999;464:123–128. doi: 10.1016/S0014-5793(99)01698-1.10.1016/S0014-5793(99)01698-110618490Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148:2783–2788.12213924Sambrook J, Russell DW. Molecular cloning. A laboratory manual. New York: Cold Spring Harbor; 2001.Boles E, Zimmermann FK. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr Genet. 1993;23:187–191. doi: 10.1007/BF00351494.10.1007/BF003514948435847Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3942051Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16:857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B.10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B10861908Krampitz LO. Synthesis of alpha-acetolactic acid. Arch Biochem. 1948;17:81–85.18910679
222668042012050920131121
1521-37651882012Feb20Chemistry (Weinheim an der Bergstrasse, Germany)ChemistryDetermination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry.234223482342-810.1002/chem.201103479Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation.Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.BodeHelge BHBInstitut für Molekulare Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60436 Frankfurt am Main, Germany. h.bode@bio.uni-frankfurt.deReimerDanielaDFuchsSebastian WSWKirchnerFerdinandFDauthChristinaCKeglerCarstenCLorenzenWolframWBrachmannAlexander OAOGrünPeterPengJournal ArticleResearch Support, Non-U.S. Gov't20120120
GermanyChemistry95137830947-65390Biological Products0Peptides0Peptides, CyclicIMBiological ProductschemistryIsotope LabelingmethodsMagnetic Resonance SpectroscopyMass SpectrometrymethodsPeptideschemistryPeptides, CyclicchemistryStereoisomerism
2011114201212460201212460201251060ppublish2226680410.1002/chem.201103479
196173622009091720211020
1098-5530191182009SepJournal of bacteriologyJ BacteriolIsoprenoids are essential for fruiting body formation in Myxococcus xanthus.584958535849-5310.1128/JB.00539-09It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.LorenzenWolframWMolekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Biozentrum/Campus Riedberg, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.RingMichael WMWSchwärGertrudGBodeHelge BHBengJournal ArticleResearch Support, Non-U.S. Gov't20090717
United StatesJ Bacteriol2985120R0021-91930Acyl Coenzyme A0Bacterial Proteins0Culture Media0Terpenes1553-55-53-hydroxy-3-methylglutaryl-coenzyme A6244-91-3isovaleryl-coenzyme A661X270Z3LmevalonolactoneS5UOB36OCZMevalonic AcidIMAcyl Coenzyme AgeneticsmetabolismBacterial ProteinsgeneticsmetabolismCulture MediaGene Expression Regulation, BacterialMevalonic Acidanalogs & derivativesmetabolismMutationMyxococcus xanthusgeneticsgrowth & developmentmetabolismTerpenesmetabolism
200972190200972190200991860201031ppublish19617362PMC273796210.1128/JB.00539-09JB.00539-09Berleman, J. E., and J. R. Kirby. 2007. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions. J. Bacteriol. 1895675-5682.PMC195182717513469Bode, H. B., and R. Müller. 2006. Analysis of myxobacterial secondary metabolism goes molecular. J. Ind. Microbiol. Biotechnol. 33577-588.16491362Bode, H. B., and R. Müller. 2007. Secondary metabolism in myxobacteria, p. 259-282. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC.Bode, H. B., M. W. Ring, G. Schwär, M. O. Altmeyer, C. Kegler, I. R. Jose, M. Singer, and R. Müller. 2009. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. Chembiochem 10128-140.18846531Bode, H. B., M. W. Ring, G. Schwär, R. M. Kroppenstedt, D. Kaiser, and R. Müller. 2006. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in the biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J. Bacteriol. 1886524-6528.PMC159549916952943Bode, H. B., S. C. Wenzel, H. Irschik, G. Höfle, and R. Müller. 2004. Unusual biosynthesis of leupyrrins in the myxobacterium Sorangium cellulosum. Angew. Chem. Int. Ed. 434163-4167.15307077Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. Müller. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47471-481.12519197Bretscher, A. P., and D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133763-768.PMC222085415048Curtis, P. D., and L. J. Shimkets. 2007. Metabolic pathways relevant to predation, signaling, and development, p. 241-258. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC.Dickschat, J. S., H. B. Bode, T. Mahmud, R. Müller, and S. Schulz. 2005. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 705174-5182.15960521Dickschat, J. S., H. B. Bode, S. C. Wenzel, R. Müller, and S. Schulz. 2005. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 62023-2033.16208730Dickschat, J. S., T. Nawrath, V. Thiel, B. Kunze, R. Müller, and S. Schulz. 2007. Biosynthesis of the off-flavor 2-methylisoborneol by the myxobacterium Nannocystis exedens. Angew. Chem. Int. Ed. 468287-8290.17899580Dickschat, J. S., S. C. Wenzel, H. B. Bode, R. Müller, and S. Schulz. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chembiochem 5778-787.15174160Gershenzon, J., and N. Dudareva. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3408-414.17576428Goldman, B. S., W. C. Nierman, D. Kaiser, S. C. Slater, A. S. Durkin, J. Eisen, C. M. Ronning, W. B. Barbazuk, M. Blanchard, C. Field, C. Halling, G. Hinkle, O. Iartchuk, H. S. Kim, C. Mackenzie, R. Madupu, N. Miller, A. Shvartsbeyn, S. A. Sullivan, M. Vaudin, R. Wiegand, and H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 10315200-15205.PMC162280017015832Hartzell, P., W. Shi, and P. Youderian. 2007. Gliding motility in Myxococcus xanthus, p. 103-122. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC.Hull, W. E., A. Berkessel, and W. Plaga. 1998. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone. Proc. Natl. Acad. Sci. USA 9511268-11273.PMC216319736725Jansen, R., A. Nowak, B. Kunze, H. Reichenbach, and G. Höfle. 1995. Four new carotenoids from Polyangium fumosum (Myxobacteria): 3,3′,4,4′-tetradehydro-1,1′,2,2′-tetrahydro-1,1′-dihydroxy-y,y-carotene (di-O-demethylspirilloxanthin), its beta-glucoside fatty acid esters. Liebigs Ann. Recl. 1995:873-876.Kleinig, H., and H. Reichenbach. 1969. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). I. The minor carotenoids. Arch. Mikrobiol. 68210-217.4315734Kleinig, H., and H. Reichenbach. 1970. A new type of carotenoid pigment isolated from myxobacteria. Naturwissenschaften 5792-93.4988084Kleinig, H., H. Reichenbach, and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II. Acylated carotenoid glucosides. Arch. Mikrobiol. 74223-234.5495385Mahmud, T., S. C. Wenzel, E. Wan, K. W. Wen, H. B. Bode, N. Gaitatzis, and R. Müller. 2005. A novel biosynthetic pathway to isovaleryl-CoA in myxobacteria: the involvement of the mevalonate pathway. Chembiochem 6322-330.15619721Mahmud, T., H. B. Bode, B. Silakowski, R. M. Kroppenstedt, M. Xu, S. Nordhoff, G. Höfle, and R. Müller. 2002. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J. Biol. Chem. 27732768-32774.12084727Michal, G. 1999. Biochemical pathways. Spektrum Akademischer Verlag, Heidelberg, Germany.Plaga, W., I. Stamm, and H. U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 9511263-11267.PMC216309736724Ring, M. W., G. Schwär, V. Thiel, J. S. Dickschat, R. M. Kroppenstedt, S. Schulz, and H. B. Bode. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J. Biol. Chem. 28136691-36700.16990257Schneiker, S., O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, S. Beyer, E. Bode, H. B. Bode, C. J. Bolten, J. V. Choudhuri, S. Doss, Y. A. Elnakady, B. Frank, L. Gaigalat, A. Goesmann, C. Groeger, F. Gross, L. Jelsbak, L. Jelsbak, J. Kalinowski, C. Kegler, T. Knauber, S. Konietzny, M. Kopp, L. Krause, D. Krug, B. Linke, T. Mahmud, R. Martinez-Arias, A. C. McHardy, M. Merai, F. Meyer, S. Mormann, J. Munoz-Dorado, J. Perez, S. Pradella, S. Rachid, G. Raddatz, F. Rosenau, C. Ruckert, F. Sasse, M. Scharfe, S. C. Schuster, G. Suen, A. Treuner-Lange, G. J. Velicer, F. J. Vorholter, K. J. Weissman, R. D. Welch, S. C. Wenzel, D. E. Whitworth, S. Wilhelm, C. Wittmann, H. Blöcker, A. Pühler, and R. Müller. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 251281-1289.17965706Shimkets, L., M. Dworkin, and H. Reichenbach. 2006. The myxobacteria, p. 31-115. In M. Dworkin (ed.), The prokaryotes, vol. 7. Springer, Berlin, Germany.Shimkets, L., and T. W. Seale. 1975. Fruiting-body formation and myxospore differentiation and germination in Mxyococcus xanthus viewed by scanning electron microscopy. J. Bacteriol. 121711-720.PMC245987803486Toal, D. R., S. W. Clifton, B. A. Roe, and J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the E1 alpha and E1 beta subunits of a branched-chain keto acid dehydrogenase. Mol. Microbiol. 16177-189.7565081
191138942009021920131121
1520-60257212009JanJournal of natural productsJ Nat ProdMyxotyrosides A and B, Unusual rhamnosides from Myxococcus sp.828682-610.1021/np8005875Myxobacteria are gliding bacteria of the delta-subdivision of the Proteobacteria and known for their unique biosynthetic capabilities. Two examples of a new class of metabolites, myxotyrosides A (1) and B (2), were isolated from a Myxococcus sp. The myxotyrosides have a tyrosine-derived core structure glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-methyl-2-hexadecenoic and (Z)-2-hexadecenoic acid. The fatty acid profile of the investigated Myxococcus sp. (strain 131) is that of a typical myxobacterium with a high similarity to those described for M. fulvus and M. xanthus, with significant concentrations of neither 15-methyl-2-hexadecenoic acid nor 2-hexadecenoic acid being detected.OhlendorfBirgitBInstitute of Pharmaceutical Biology, UniVersity of Bonn, Nussallee 6, D-53115 Bonn, Germany.LorenzenWolframWKehrausStefanSKrickAnjaABodeHelge BHBKönigGabriele MGMengJournal Article
United StatesJ Nat Prod79068820163-38640Antineoplastic Agents0Fatty Acids0Glycolipids0myxotyroside A0myxotyroside BQN34XC755ARhamnoseIMAnimalsAntineoplastic Agentschemistryisolation & purificationpharmacologyBacillus megateriumdrug effectsChlorelladrug effectsDrug Screening Assays, AntitumorEscherichia colidrug effectsEurotiumdrug effectsFatty AcidsgeneticsGas Chromatography-Mass SpectrometryGlycolipidschemistryisolation & purificationpharmacologyMicrobial Sensitivity TestsMolecular StructureMyxococcuschemistryPlasmodium falciparumdrug effectsPseudomonas putidadrug effectsQuorum SensingRhamnoseanalogs & derivativeschemistryisolation & purificationpharmacology
20081231902008123190200922090ppublish1911389410.1021/np800587510.1021/np8005875
trying2...
Publications by Wolfram Lorenzen | LitMetric

Publications by authors named "Wolfram Lorenzen"

The UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra, as well as NMR and high resolution tandem mass spectrometry spectra were determined for two prominent secondary metabolites from cyanobacteria, namely anabaenopeptin A and anabaenopeptin B. The compounds were extracted from the cyanobacterium CBT929 and purified by flash chromatography and HPLC. Exact amounts of isolated compounds were assessed by quantitative H-NMR with internal calibrant ethyl 4-(dimethylamino)benzoate in DMSO‑ at 298 K with a recycle delay (d1) of 120 s.

View Article and Find Full Text PDF

Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions.

View Article and Find Full Text PDF

Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.

View Article and Find Full Text PDF

Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD.

View Article and Find Full Text PDF

Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M.

View Article and Find Full Text PDF

Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.

View Article and Find Full Text PDF

Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S.

View Article and Find Full Text PDF

Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation.

View Article and Find Full Text PDF

It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.

View Article and Find Full Text PDF

Myxobacteria are gliding bacteria of the delta-subdivision of the Proteobacteria and known for their unique biosynthetic capabilities. Two examples of a new class of metabolites, myxotyrosides A (1) and B (2), were isolated from a Myxococcus sp. The myxotyrosides have a tyrosine-derived core structure glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-methyl-2-hexadecenoic and (Z)-2-hexadecenoic acid.

View Article and Find Full Text PDF