trying...
11 1 0 1 MCID_676f086566c932f78708ee2a
39381007
Wolfram Lorenzen[author] Lorenzen, Wolfram[Full Author Name] lorenzen, wolfram[Author]
trying2... trying...
39381007 2024 10 10 2352-3409 57 2024 Dec Data in brief Data Brief UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra for the two cyanobacterial metabolites anabaenopeptin A and anabaenopeptin B. 110914 110914 110914 10.1016/j.dib.2024.110914 The UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra, as well as NMR and high resolution tandem mass spectrometry spectra were determined for two prominent secondary metabolites from cyanobacteria, namely anabaenopeptin A and anabaenopeptin B. The compounds were extracted from the cyanobacterium Planktothrix rubescens CBT929 and purified by flash chromatography and HPLC. Exact amounts of isolated compounds were assessed by quantitative 1 H-NMR with internal calibrant ethyl 4-(dimethylamino)benzoate in DMSO‑d6 at 298 K with a recycle delay (d1) of 120 s. UV-vis absorbance spectra were recorded in methanol at room temperature. Molar extinction coefficients were determined at 278 nm as 4190 M-1 cm-1 and 2300 M-1 cm-1 in methanol for anabaenopeptin A and anabaenopeptin B, respectively. Circular dichroism spectra and secondary fragmentation mass spectra are also reported. © 2024 The Authors. Published by Elsevier Inc. Steiner Till T Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. Schanbacher Franziska F Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany. Lorenzen Wolfram W Simris Biologics GmbH, Magnusstrasse 11, 12489 Berlin, Germany. Enke Heike H Simris Biologics GmbH, Magnusstrasse 11, 12489 Berlin, Germany. Janssen Elisabeth M-L EM Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Düberndorf, Switzerland. Niedermeyer Timo H J THJ Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany. Gademann Karl K Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. eng Journal Article 2024 09 15 Netherlands Data Brief 101654995 2352-3409 Cyanobacteria Metabolites Quantitative NMR UV–vis spectroscopy 2024 5 23 2024 8 12 2024 9 2 2024 10 9 7 30 2024 10 9 7 29 2024 10 9 4 41 2024 9 15 epublish 39381007 PMC11460485 10.1016/j.dib.2024.110914 S2352-3409(24)00877-1 Steiner T., Schanbacher F., Lorenzen W., Enke H., Janssen E.M.-L., Niedermeyer T.H.J., Gademann K. UV–vis absorbance spectra, molar extinction coefficients and circular dichroism spectra for the two cyanobacterial metabolites anabaenopeptin A and anabaenoepeptin B. Data Set. 2024 https://zenodo.org/records/11203432 Beversdorf L.J., Weirich C.A., Bartlett S.L., Miller T.R. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins (Basel) 2017;9 doi: 10.3390/toxins9020062. 10.3390/toxins9020062 Miller T.R., Bartlett S.L., Weirich C.A., Hernandez J. Automated subdaily sampling of cyanobacterial toxins on a buoy reveals new temporal patterns in toxin dynamics. Environ. Sci. Technol. 2019;53:5661–5670. doi: 10.1021/acs.est.9b00257. 10.1021/acs.est.9b00257 31038305 Janssen E.M.-L., Jones M.R., Pinto E., Dörr F., Torres M.A., Rios Jacinavicius F., Mazur-Marzec H., Szubert K., Konkel R., Tartaglione L., Dell'Aversano C., Miglione A., McCarron P., Beach D.G., Miles C.O., Fewer D.P., Sivonen K., Jokela J., Wahlsten M., Niedermeyer T.H.J., Schanbacher F., Leão P., Preto M., D'Agostino P.M., Baunach M., Dittmann E., Reher R. S75 | CyanoMetDB | Comprehensive database of secondary metabolites from cyanobacteria. Data Set. 2023 doi: 10.5281/ZENODO.7922070. 10.5281/ZENODO.7922070 33765498 Ferrinho S., Connaris H., Mouncey N.J., Goss R.J.M. Compendium of metabolomic and genomic datasets for cyanobacteria: mined the gap. Water Res. 2024;256 doi: 10.1016/j.watres.2024.121492. 10.1016/j.watres.2024.121492 38593604 Itou Y., Suzuki S., Ishida K., Murakami M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595) Bioorg. Med. Chem. Lett. 1999;9:1243–1246. doi: 10.1016/S0960-894X(99)00191-2. 10.1016/S0960-894X(99)00191-2 10340607 Kodani S., Suzuki S., Ishida K., Murakami M. Five new cyanobacterial peptides from water bloom materials of lake Teganuma (Japan) FEMS Microbiol. Lett. 1999;178:343–348. doi: 10.1111/j.1574-6968.1999.tb08697.x. 10.1111/j.1574-6968.1999.tb08697.x Murakami M., Suzuki S., Itou Y., Kodani S., Ishida K. New anabaenopeptins, carboxypeptidaze-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod. 2000;63:1280–1282. doi: 10.1021/np000120k. 10.1021/np000120k 11000037 Walther T., Renner S., Waldmann H., Arndt H.-D. Synthesis and structure-activity correlation of brunsvicamide-inspired cyclopeptide collection. ChemBioChem. 2009;10:1153–1162. doi: 10.1002/cbic.200900035. 10.1002/cbic.200900035 19360807 Schreuder H., Liesum A., Lönze P., Stump H., Hoffmann H., Schiell M., Kurz M., Toti L., Bauer A., Kallus C., Klemke-Jahn C., Czech J., Kramer D., Enke H., Niedermeyer T.H.J., Morrison V., Kumar V., Brönstrup M. Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) Sci. Rep. 2016;6 doi: 10.1038/srep32958. 10.1038/srep32958 PMC5015106 27604544 Blom J.F., Robinson J.A., Jüttner F. High grazer toxicity of [D-Asp3,(E)-Dhb7]microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon. 2001;39:1923–1932. doi: 10.1016/S0041-0101(01)00178-7. 10.1016/S0041-0101(01)00178-7 11600156 Harada K.-I., Matsuura K., Suzuki M., Watanabe M.F., Oishi S., Dahlem A.M., Beasley V.R., Carmichael W.W. Isolation and characterization of the minor components associated with mycrocystins LR and RR in the cyanobacterium (blue-green algae) Toxicon. 1990;28:55–64. doi: 10.1016/0041-0101(90)90006-S. 10.1016/0041-0101(90)90006-S 2109908 Honkanen R.E., Zwiller J., Moore R.E., Daily S.L., Khatra B.S., Dukelow M., Boynton A.L. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. Biol. Chem. 1990;265:19401–19404. doi: 10.1016/S0021-9258(17)45384-1. 10.1016/S0021-9258(17)45384-1 2174036 Sano T., Kaya K. Two new (E)-2-amino-2-butenoic acid (Dhb)-containing microcystins isolated from Oscillatoria agardhii. Tetrahedron. 1998;54:463–470. doi: 10.1016/S0040-4020(97)10291-5. 10.1016/S0040-4020(97)10291-5 Weber M., Hellriegel C., Rück A., Sauermoser R., Wüthrich J. Using high-performance quantitative NMR (HP-qNMR®) for certifying traceable and highly accurate purity values of organic reference materials with uncertainties <0.1 % Accredit. Qual. Assur. 2013;18:91–98. doi: 10.1007/s00769-012-0944-9. 10.1007/s00769-012-0944-9 Harada K.-I., Fujii K., Shimada T., Suzuki M., Sano H., Adachi K., Carmichael W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995;36:1511–1514. doi: 10.1016/0040-4039(95)00073-L. 10.1016/0040-4039(95)00073-L Andersen R.A. Elsevier Academic Press; 2005. Algal Culturing Techniques. 32464061 2021 08 10 2021 08 10 1520-6025 83 6 2020 Jun 26 Journal of natural products J Nat Prod Precursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins. 1960 1970 1960-1970 10.1021/acs.jnatprod.0c00251 Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters. Moschny Julia J Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany. Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany. Lorenzen Wolfram W Cyano Biotech GmbH, 12489 Berlin, Germany. Hilfer Alexandra A Cyano Biotech GmbH, 12489 Berlin, Germany. Eckenstaler Robert R Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany. Jahns Stefan S Cyano Biotech GmbH, 12489 Berlin, Germany. Enke Heike H Cyano Biotech GmbH, 12489 Berlin, Germany. Enke Dan D Cyano Biotech GmbH, 12489 Berlin, Germany. Schneider Philipp P Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany. Benndorf Ralf A RA Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany. Niedermeyer Timo H J THJ 0000-0003-1779-7899 Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany. Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2020 05 28 United States J Nat Prod 7906882 0163-3864 0 Amino Acids 0 Antibiotics, Antineoplastic 0 Azides 0 Fluorescent Dyes 0 Liver-Specific Organic Anion Transporter 1 0 Microcystins 0 SLCO1B1 protein, human 0 SLCO1B3 protein, human 0 Solute Carrier Organic Anion Transporter Family Member 1B3 IM Amino Acids chemistry Antibiotics, Antineoplastic chemistry pharmacology Azides chemistry Cell Line, Tumor Cyanobacteria chemistry metabolism Fluorescent Dyes HEK293 Cells Humans Liver-Specific Organic Anion Transporter 1 drug effects Microcystins biosynthesis chemistry Microcystis chemistry metabolism Molecular Structure Solute Carrier Organic Anion Transporter Family Member 1B3 drug effects 2020 5 29 6 0 2021 8 11 6 0 2020 5 29 6 0 ppublish 32464061 10.1021/acs.jnatprod.0c00251 26747649 2016 06 07 2016 11 26 0006-3002 1861 3 2016 Mar Biochimica et biophysica acta Biochim Biophys Acta Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. 239 248 239-48 10.1016/j.bbalip.2015.12.023 S1388-1981(15)00245-0 Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1. Copyright © 2016 Elsevier B.V. All rights reserved. Barka Frederik F Plant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Angstenberger Max M Plant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Ahrendt Tilman T Merck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Lorenzen Wolfram W Merck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Bode Helge B HB Merck Stiftungsprofessur für Molekulare Biotechnologie, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany. Büchel Claudia C Plant Cell Physiology, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany. Electronic address: c.buechel@bio.uni-frankfurt.de. eng Journal Article Research Support, Non-U.S. Gov't 2015 12 30 Netherlands Biochim Biophys Acta 0217513 0006-3002 0 RNA, Antisense 0 Recombinant Proteins 0 Triglycerides EC 3.1.1.3 Lipase IM Amino Acid Motifs Amino Acid Sequence Diatoms enzymology genetics Gene Expression Regulation, Enzymologic Gene Knockdown Techniques Genotype Hydrolysis Kinetics Lipase chemistry genetics metabolism Molecular Sequence Data Phenotype Phylogeny RNA, Antisense genetics metabolism Recombinant Proteins metabolism Triglycerides metabolism Antisense Lipase Lipids Polyunsaturated fatty acids 2015 3 30 2015 12 17 2015 12 29 2016 1 10 6 0 2016 1 10 6 0 2016 6 9 6 0 ppublish 26747649 10.1016/j.bbalip.2015.12.023 S1388-1981(15)00245-0 25384483 2015 02 25 2018 11 13 1098-5530 197 2 2015 Jan Journal of bacteriology J Bacteriol Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol. 382 391 382-91 10.1128/JB.02383-14 Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD. NADH is reoxidized by reducing propionaldehyde to propanol. The potential gene cluster coding for the responsible enzymes includes genes coding for shell proteins of bacterial microcompartments. Electron microscopy revealed the presence of microcompartments as well as storage granules in cells grown on 1,2-PD. Gene clusters coding for the 1,2-PD pathway can be found in other acetogens as well, but the distribution shows no relation to the phylogeny of the organisms. Copyright © 2015, American Society for Microbiology. All Rights Reserved. Schuchmann Kai K Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Schmidt Silke S Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Martinez Lopez Antonio A Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Kaberline Christina C Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Kuhns Martin M Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Lorenzen Wolfram W Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Bode Helge B HB Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Joos Friederike F Max-Planck-Institut für Biophysik, Strukturbiologie, Frankfurt am Main, Germany. Müller Volker V Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany vmueller@bio.uni-frankfurt.de. eng Journal Article Research Support, Non-U.S. Gov't 2014 11 10 United States J Bacteriol 2985120R 0021-9193 6DC9Q167V3 Propylene Glycol IM Acetobacterium growth & development metabolism ultrastructure Propylene Glycol metabolism 2014 11 12 6 0 2014 11 12 6 0 2015 2 26 6 0 2015 7 1 ppublish 25384483 PMC4272584 10.1128/JB.02383-14 JB.02383-14 Drake HL, Gößner AS, Daniel SL. 2008. Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. doi:10.1196/annals.1419.016. 10.1196/annals.1419.016 18378590 Müller V. 2003. Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353. doi:10.1128/AEM.69.11.6345-6353.2003. 10.1128/AEM.69.11.6345-6353.2003 PMC262307 14602585 Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898. doi:10.1016/j.bbapap.2008.08.012. 10.1016/j.bbapap.2008.08.012 PMC2646786 18801467 Wood HG, Ragsdale SW, Pezacka E. 1986. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362. doi:10.1111/j.1574-6968.1986.tb01865.x. 10.1111/j.1574-6968.1986.tb01865.x Hugenholtz J, Ljungdahl LG. 1990. Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 87:383–389. doi:10.1111/j.1574-6968.1990.tb04941.x. 10.1111/j.1574-6968.1990.tb04941.x 2094291 Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V. 2012. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439. doi:10.1371/journal.pone.0033439. 10.1371/journal.pone.0033439 PMC3315566 22479398 Biegel E, Müller V. 2010. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107:18138–18142. doi:10.1073/pnas.1010318107. 10.1073/pnas.1010318107 PMC2964206 20921383 Schuchmann K, Müller V. 2012. A bacterial electron bifurcating hydrogenase. J Biol Chem 287:31165–31171. doi:10.1074/jbc.M112.395038. 10.1074/jbc.M112.395038 PMC3438948 22810230 Müller V, Aufurth S, Rahlfs S. 2001. The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120. doi:10.1016/S0005-2728(00)00281-4. 10.1016/S0005-2728(00)00281-4 11248193 Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Müller DJ, Meier T, Müller V. 2008. An intermediate step in the evolution of ATPases: a hybrid F1FO rotor in a bacterial Na+ F1FO ATP synthase. FEBS J 275:1999–2007. doi:10.1111/j.1742-4658.2008.06354.x. 10.1111/j.1742-4658.2008.06354.x 18355313 Seifritz C, Daniel SL, Gössner A, Drake HL. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013. PMC206981 8253688 Bache R, Pfennig N. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261. doi:10.1007/BF00459530. 10.1007/BF00459530 Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V. 2007. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: indications for a Rnf-type NADH dehydrogenase as coupling site. J Bacteriol 189:8145–8153. doi:10.1128/JB.01017-07. 10.1128/JB.01017-07 PMC2168664 17873051 Hess V, Gonzalez JM, Parthasarathy A, Buckel W, Muller V. 2013. Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation. Appl Environ Microbiol 79:1942–1947. doi:10.1128/AEM.03604-12. 10.1128/AEM.03604-12 PMC3592220 23315745 Hess V, Vitt S, Müller V. 2011. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. J Bacteriol 193:971–978. doi:10.1128/JB.01126-10. 10.1128/JB.01126-10 PMC3028691 21131487 Bertsch J, Parthasarathy A, Buckel W, Müller V. 2013. An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 288:11304–11311. doi:10.1074/jbc.M112.444919. 10.1074/jbc.M112.444919 PMC3630892 23479729 Eichler B, Schink B. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152. doi:10.1007/BF00454917. 10.1007/BF00454917 Obradors N, Badia J, Baldoma L, Aguilar J. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella Typhimurium. J Bacteriol 170:2159–2162. PMC211101 3283105 Heise R, Müller V, Gottschalk G. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478. PMC210386 2507527 Heise R, Müller V, Gottschalk G. 1992. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–557. doi:10.1111/j.1432-1033.1992.tb16959.x. 10.1111/j.1432-1033.1992.tb16959.x 1534543 Bryant MP. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328. 4565349 Hungate RE. 1969. A roll tube methode for cultivation of strict anaerobes, p 117–132. In Norris JR, Ribbons DW (ed), Methods in microbiology, vol 3b Academic Press, New York, NY. Schmidt K, Liaaen-Jensen S, Schlegel HG. 1963. Die carotinoide der Thiorhodaceae. Arch Mikrobiol 46:117–126. doi:10.1007/BF00408204. 10.1007/BF00408204 14044829 Schuchmann K, Müller V. 2013. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1385. doi:10.1126/science.1244758. 10.1126/science.1244758 24337298 Hess V, Schuchmann K, Müller V. 2013. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502. doi:10.1074/jbc.M113.510255. 10.1074/jbc.M113.510255 PMC3814746 24045950 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404. 10.1093/bioinformatics/btm404 17846036 Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699. doi:10.1093/nar/gkq313. 10.1093/nar/gkq313 PMC2896090 20439314 Zdobnov EM, Apweiler R. 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848. doi:10.1093/bioinformatics/17.9.847. 10.1093/bioinformatics/17.9.847 11590104 Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteine-dye-binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3. 10.1016/0003-2697(76)90527-3 942051 Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975. PMC103623 10498708 Sampson EM, Johnson CL, Bobik TA. 2005. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiology 151:1169–1177. doi:10.1099/mic.0.27755-0. 10.1099/mic.0.27755-0 15817784 Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810. doi:10.1128/JB.185.9.2802-2810.2003. 10.1128/JB.185.9.2802-2810.2003 PMC154405 12700259 Cheng S, Fan C, Sinha S, Bobik TA. 2012. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica. PLoS One 7:e47144. doi:10.1371/journal.pone.0047144. 10.1371/journal.pone.0047144 PMC3471927 23077559 Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR. 1997. Propanediol utilization genes (pdu) of Salmonella Typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639. PMC179589 9352910 Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361. doi:10.1007/s00203-003-0601-0. 10.1007/s00203-003-0601-0 14504694 Rondon MR, Escalante-Semerena JC. 1996. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella Typhimurium LT2. J Bacteriol 178:2196–2203. PMC177925 8636018 Rondon MR, Escalante-Semerena JC. 1992. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella Typhimurium. J Bacteriol 174:2267–2272. PMC205847 1313000 Dilling S, Imkamp F, Schmidt S, Müller V. 2007. Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 73:3630–3636. doi:10.1128/AEM.02060-06. 10.1128/AEM.02060-06 PMC1932707 17416687 Jeter RM. 1990. Cobalamin-dependent 1,2-propanediol utilization by Salmonella Typhimurium. J Gen Microbiol 136:887–896. doi:10.1099/00221287-136-5-887. 10.1099/00221287-136-5-887 2166132 Liu Y, Leal NA, Sampson EM, Johnson CL, Havemann GD, Bobik TA. 2007. PduL is an evolutionarily distinct phosphotransacylase involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. J Bacteriol 189:1589–1596. doi:10.1128/JB.01151-06. 10.1128/JB.01151-06 PMC1855771 17158662 Sampson EM, Bobik TA. 2008. Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 190:2966–2971. doi:10.1128/JB.01925-07. 10.1128/JB.01925-07 PMC2293232 18296526 Tocheva EI, Matson EG, Cheng SN, Chen WG, Leadbetter JR, Jensen GJ. 2014. Structure and expression of propanediol utilization microcompartments in Acetonema longum. J Bacteriol 196:1651–1658. doi:10.1128/JB.00049-14. 10.1128/JB.00049-14 PMC3993321 24532773 Anantharaman V, Aravind L. 2005. MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Bioinformatics 21:2805–2811. doi:10.1093/bioinformatics/bti418. 10.1093/bioinformatics/bti418 15814558 Buschhorn H, Dürre P, Gottschalk G. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840. PMC202959 16347978 Toraya T, Honda S, Fukui S. 1979. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. J Bacteriol 139:39–47. PMC216824 378959 Balch WE, Schoberth S, Tanner RS, Wolfe RS. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing, anaerobic bacteria. Int J Syst Bact 27:355–361. doi:10.1099/00207713-27-4-355. 10.1099/00207713-27-4-355 Kane MD, Breznak JA. 1991. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98. doi:10.1007/BF00290979. 10.1007/BF00290979 1723588 Liou JS, Balkwill DL, Drake GR, Tanner RS. 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0. 10.1099/ijs.0.63482-0 16166714 Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL. 2000. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50(Part 2):537–546. 10758858 Genthner BR, Davis CL, Bryant MP. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 42:12–19. PMC243953 6791591 25332432 2015 10 19 2021 10 21 1539-7262 55 12 2014 Dec Journal of lipid research J Lipid Res A comprehensive insight into the lipid composition of Myxococcus xanthus by UPLC-ESI-MS. 2620 2633 2620-33 10.1194/jlr.M054593 Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M. xanthus, a lipid species previously found only in eukaryotes. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc. Lorenzen Wolfram W Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany. Bozhüyük Kenan A J KA Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany. Cortina Niña S NS Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany. Bode Helge B HB Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2014 10 20 United States J Lipid Res 0376606 0022-2275 0 Bacterial Proteins 0 Lipids IM Bacterial Proteins genetics Chromatography, High Pressure Liquid Chromatography, Reverse-Phase Databases, Chemical Gas Chromatography-Mass Spectrometry Lipid Metabolism Lipids analysis chemistry Metabolomics methods Molecular Structure Mutation Myxococcus xanthus metabolism Spectrometry, Mass, Electrospray Ionization Tandem Mass Spectrometry ceramide phosphoinositols electrospray ionization-mass spectrometry ether lipids lipid profiles lipidomics myxobacteria reversed phase ultra-performance liquid chromatography 2014 10 22 6 0 2014 10 22 6 0 2015 10 20 6 0 2015 12 1 ppublish 25332432 PMC4242454 10.1194/jlr.M054593 S0022-2275(20)36701-8 Kaiser D. 2008. Myxococcus—from single-cell polarity to complex multicellular patterns. Annu. Rev. Genet. 42: 109–130. 18605899 Weissman K. J., Müller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276–1295. 20520915 Kearns D. B., Shimkets L. J. 2001. Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol. 9: 126–129. 11239790 Ring M. W., Schwär G., Thiel V., Dickschat J. S., Kroppenstedt R. M., Schulz S., Bode H. B. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J. Biol. Chem. 281: 36691–36700. 16990257 Bhat S., Ahrendt T., Dauth C., Bode H. B., Shimkets L. J. 2014. Two lipid signals guide fruiting body development of Myxococcus xanthus. MBio. 5: e00939–e009313. PMC3950526 24520059 Fautz E., Rosenfelder G., Grotjahn L. 1979. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858. PMC216725 118159 Bode H. B., Ring M. W., Kaiser D., David A. C., Kroppenstedt R. M., Schwär G. 2006. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation. J. Bacteriol. 188: 5632–5634. PMC1540027 16855254 Ring M. W., Bode E., Schwär G., Bode H. B. 2009. Functional analysis of desaturases from the myxobacterium Myxococcus xanthus. FEMS Microbiol. Lett. 296: 124–130. 19459946 Ring M. W., Schwär G., Bode H. B. 2009. Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria. ChemBioChem. 10: 2003–2010. 19575369 Hoiczyk E., Ring M. W., McHugh C. A., Schwär G., Bode E., Krug D., Altmeyer M. O., Lu J. Z., Bode H. B. 2009. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol. Microbiol. 74: 497–517. PMC2877170 19788540 Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ. Microbiol. 8: 1935–1949. 17014493 Lorenzen W., Ahrendt T., Bozhüyük K. A. J., Bode H. B. 2014. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat. Chem. Biol. 10: 425–427. 24814673 Caillon E., Lubochinsky B., Rigomier D. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351. PMC221784 6402494 Kleinig H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I. Isolation and composition. Biochim. Biophys. Acta. 274: 489–498. 4340261 Orndorff P. E., Dworkin M. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927. PMC293705 6767694 Fuchs B., Schiller J. 2009. Application of MALDI-TOF mass spectrometry in lipidomics. Eur. J. Lipid Sci. Technol. 111: 83–98. Han X., Yang K., Gross R. W. 2012. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31: 134–178. PMC3259006 21755525 Furey A., Moriarty M., Bane V., Kinsella B., Lehane M. 2013. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 115: 104–122. 24054567 Shan L., Jaffe K., Li S., Davis L. 2008. Quantitative determination of lysophosphatidic acid by LC/ESI/MS/MS employing a reversed phase HPLC column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 864: 22–28. 18262478 Hutchins P. M., Barkley R. M., Murphy R. C. 2008. Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J. Lipid Res. 49: 804–813. PMC2367097 18223242 Rütters H., Sass H., Cypionka H., Rullkötter J. 2001. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol. 176: 435–442. 11734887 Bligh E. G., Dyer W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917. 13671378 Bode H. B., Ring M. W., Schwär G., Kroppenstedt R. M., Kaiser D., Müller R. 2006. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J. Bacteriol. 188: 6524–6528. PMC1595499 16952943 Lipid Maps: Lipidomics Gateway. Accessed 26 September 2014 at http://www.lipidmaps.org. Ejsing C. S. 2007. Molecular Characterization of the Lipidome by Mass Spectrometry. Doctoral Thesis. Technische Universität Dresden, Dresden, Germany. Blaas N., Humpf H. 2013. Structural profiling and quantitation of glycosyl inositol phosphoceramides in plants with Fourier transform mass spectrometry. J. Agric. Food Chem. 61: 4257–4269. 23573790 Elkhayat E. S., Mohamed G. A., Ibrahim S. R. M. 2012. Activity and structure elucidation of ceramides. Curr. Bioact. Compd. 8: 370–409. Scherer M., Schmitz G., Liebisch G. 2010. Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal. Chem. 82: 8794–8799. 20945919 Zemski Berry K. A., Murphy R. C. 2004. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J. Am. Soc. Mass Spectrom. 15: 1499–1508. 15465363 Hsu F. F., Turk J., Rhoades E. R., Russell D. G., Shi Y., Groisman E. A. 2005. Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 16: 491–504. 15792718 Smith P. B., Snyder A. P., Harden C. S. 1995. Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal. Chem. 67: 1824–1830. 9306733 Oursel D., Loutelier-Bourhis C., Orange N., Chevalier S., Norris V., Lange C. M. 2007. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass Spectrom. 21: 1721–1728. 17477452 Murphy R. C., James P. F., McAnoy A. M., Krank J., Duchoslav E., Barkley R. M. 2007. Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal. Biochem. 366: 59–70. PMC2034497 17442253 Tsui F. C., Ojcius D. M., Hubbell W. L. 1986. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 49: 459–468. PMC1329485 3955180 Marsh D. 1990. CRC Handbook of Lipid Bilayers. CRC Press, Boca Raton, FL. Kaiser D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA. 76: 5952–5956. PMC411771 42906 Murphy R. C., Axelsen P. H. 2011. Mass spectrometric analysis of long-chain lipids. Mass Spectrom. Rev. 30: 579–599. PMC3117083 21656842 Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ. Microbiol. 8: 1935–1949. 17014493 Becker G. W., Lester R. L. 1980. Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J. Bacteriol. 142: 747–754. PMC294087 6991492 Hackett J. A., Brennan P. J. 1977. The isolation and biosynthesis of the ceramide-phosphoinositol of Aspergillus niger. FEBS Lett. 74: 259–263. 849793 Smith T. K., Bütikofer P. 2010. Lipid metabolism in Trypanosoma brucei. Mol. Biochem. Parasitol. 172: 66–79. PMC3744938 20382188 Hsu F. F., Turk J., Zhang K., Beverley S. M. 2007. Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 18: 1591–1604. PMC2065762 17627842 Kaul K., Lester R. L. 1975. Characterization of inositol-containing phosphosphingolipids from tobacco leaves: isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide. Plant Physiol. 55: 120–129. PMC541565 16659016 Eckau H., Dill D., Budzikiewicz H. 1984. Neuartige ceramide aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. C. 39: 1–9. Stein J., Budzikiewicz H. 1988. Ceramid-1-phosphoethanolamine aus Myxococcus stipitatus. Z. Naturforsch. B. 43: 1063–1067. Keck M., Gisch N., Moll H., Vorhölter F., Gerth K., Kahmann U., Lissel M., Lindner B., Niehaus K., Holst O. 2011. Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J. Biol. Chem. 286: 12850–12859. PMC3075632 21321121 Levine T. P., Wiggins C. A., Munro S. 2000. Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol. Biol. Cell. 11: 2267–2281. PMC14918 10888667 Curtis P. D., Shimkets L. J. Chapter IV: Structure and Metabolism (subchapter) In Myxobacteria: Multicellularity and Differentiation. D. E. Whitworth, editor. ASM Press, Washington, DC. 248–258. Buré C., Cacas J., Mongrand S., Schmitter J. 2014. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal. Bioanal. Chem. 406: 995–1010. 23887274 Zhong W., Jeffries M. W., Georgopapadakou N. H. 2000. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother. 44: 651–653. PMC89741 10681333 Rhome R., del Poeta M. D., del Poeta M. 2009. Lipid signaling in pathogenic fungi. Annu. Rev. Microbiol. 63: 119–131. PMC5125068 19450140 24814673 2014 07 15 2021 10 21 1552-4469 10 6 2014 Jun Nature chemical biology Nat Chem Biol A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. 425 427 425-7 10.1038/nchembio.1526 Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation. Lorenzen Wolfram W Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany. Ahrendt Tilman T Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany. Bozhüyük Kenan A J KA Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany. Bode Helge B HB Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany. eng GENBANK KJ633122 KJ633123 KJ633124 KJ633125 Journal Article Research Support, Non-U.S. Gov't 2014 05 11 United States Nat Chem Biol 101231976 1552-4450 0 Ethers 0 Lipids 0 Multifunctional Enzymes IM Catalytic Domain Ethers Genes, Bacterial Genome, Bacterial Lipids biosynthesis chemistry Molecular Sequence Data Multifunctional Enzymes genetics physiology Multigene Family Myxococcus xanthus enzymology genetics physiology Spores, Bacterial physiology Stigmatella aurantiaca enzymology genetics physiology 2013 9 14 2014 4 14 2014 5 13 6 0 2014 5 13 6 0 2014 7 16 6 0 ppublish 24814673 10.1038/nchembio.1526 nchembio.1526 J Am Chem Soc. 2010 Aug 11;132(31):10628-9 20230003 Can J Biochem Physiol. 1959 Aug;37(8):911-7 13671378 Nature. 1970 Aug 15;227(5259):680-5 5432063 Anal Biochem. 1984 Apr;138(1):141-3 6731838 J Bacteriol. 2004 Jul;186(13):4361-8 15205438 J Bacteriol. 2007 Dec;189(24):8793-800 17905977 Biochimie. 2013 Jan;95(1):59-65 22771767 Chem Biol. 2004 Feb;11(2):195-201 15123281 Mol Microbiol. 2009 Oct;74(2):497-517 19788540 Chem Biol. 1996 Nov;3(11):923-36 8939709 J Biol Chem. 2006 Dec 1;281(48):36691-700 16990257 J Bacteriol. 1951 Sep;62(3):293-300 14888646 Food Chem. 2013 Jan 15;136(2):464-71 23122085 Folia Microbiol (Praha). 2012 Sep;57(5):463-72 22763737 Environ Microbiol. 2006 Nov;8(11):1935-49 17014493 Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1524-30 19502347 J Bacteriol. 1998 Mar;180(6):1425-30 9515909 Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13990-4 11717456 Biochem Cell Biol. 1990 Jan;68(1):225-30 2350489 Angew Chem Int Ed Engl. 2012 Nov 26;51(48):12086-9 23097192 Conserv Biol. 2013 Feb;27(1):197-209 23110546 J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jan 5;814(1):155-61 15607720 J Bacteriol. 1978 Feb;133(2):763-8 415048 J Biol Chem. 2002 Sep 6;277(36):32768-74 12084727 Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17790-5 24127586 Chem Phys Lipids. 2011 Jul;164(5):315-40 21635876 Mol Plant. 2013 Mar;6(2):246-9 23253604 BMC Bioinformatics. 2010 Jan 27;11:57 20105319 Biochim Biophys Acta. 2011 Mar;1811(3):186-93 21195206 Appl Environ Microbiol. 2000 Mar;66(3):884-9 10698746 FEBS Lett. 1976 Mar 15;63(1):107-11 1261671 23097192 2013 08 07 2012 11 21 1521-3773 51 48 2012 Nov 26 Angewandte Chemie (International ed. in English) Angew Chem Int Ed Engl Reciprocal cross talk between fatty acid and antibiotic biosynthesis in a nematode symbiont. 12086 12089 12086-9 10.1002/anie.201205384 Brachmann Alexander O AO Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. Reimer Daniela D Lorenzen Wolfram W Augusto Alonso Eduardo E Kopp Yannick Y Piel Jörn J Bode Helge B HB eng Journal Article Research Support, Non-U.S. Gov't 2012 10 24 Germany Angew Chem Int Ed Engl 0370543 1433-7851 0 Anti-Bacterial Agents 0 Fatty Acids IM Animals Anti-Bacterial Agents biosynthesis chemistry Fatty Acids biosynthesis chemistry Nematoda metabolism 2012 7 8 2012 10 26 6 0 2012 10 26 6 0 2013 8 8 6 0 ppublish 23097192 10.1002/anie.201205384 22954227 2012 10 02 2022 04 10 1754-6834 5 1 2012 Sep 06 Biotechnology for biofuels Biotechnol Biofuels Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. 65 65 The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production. Brat Dawid D Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str, 9, 60438, Frankfurt am Main, Germany. e.boles@bio.uni-frankfurt.de. Weber Christian C Lorenzen Wolfram W Bode Helge B HB Boles Eckhard E eng Journal Article 2012 09 06 England Biotechnol Biofuels 101316935 1754-6834 2012 7 16 2012 8 30 2012 9 8 6 0 2012 9 8 6 0 2012 9 8 6 1 2012 9 6 epublish 22954227 PMC3476451 10.1186/1754-6834-5-65 1754-6834-5-65 Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87:1303–1315. doi: 10.1007/s00253-010-2707-z. 10.1007/s00253-010-2707-z 20535464 Dickinson JR, Harrison SJ, Hewlins MJ. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem. 1998;273:25751–25756. doi: 10.1074/jbc.273.40.25751. 10.1074/jbc.273.40.25751 9748245 Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–2266. doi: 10.1128/AEM.02625-07. 10.1128/AEM.02625-07 PMC2293160 18281432 Ehrlich F. Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe. Berichte Deutsch Chem Gesellschaft. 1907;40:1021–1047. doi: 10.1002/cber.190704001155. 10.1002/cber.190704001155 Velasco JA, Cansado J, Pena MC, Kawakami T, Laborda J, Notario V. Cloning of the dihydroxyacid dehydratase-encoding gene (ILV3) from Saccharomyces cerevisiae. Gene. 1993;137:179–185. doi: 10.1016/0378-1119(93)90004-M. 10.1016/0378-1119(93)90004-M 8299945 Kispal G, Steiner H, Court DA, Rolinski B, Lill R. Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem. 1996;271:24458–24464. doi: 10.1074/jbc.271.40.24458. 10.1074/jbc.271.40.24458 8798704 Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–89. doi: 10.1038/nature06450. 10.1038/nature06450 18172501 Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol. 2011;90:1681–1690. doi: 10.1007/s00253-011-3173-y. 10.1007/s00253-011-3173-y PMC3094657 21547458 Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich Pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91:577–589. doi: 10.1007/s00253-011-3280-9. 10.1007/s00253-011-3280-9 21533914 Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87:1045–1055. doi: 10.1007/s00253-010-2522-6. 10.1007/s00253-010-2522-6 PMC2886118 20376637 Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels. 2011;4:21. doi: 10.1186/1754-6834-4-21. 10.1186/1754-6834-4-21 PMC3162486 21798060 Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol. 2012;159:32–37. doi: 10.1016/j.jbiotec.2012.01.022. 10.1016/j.jbiotec.2012.01.022 22342368 Ryan ED, Kohlhaw GB. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974;120:631–637. PMC245821 4616942 Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res. 2005;5:757–766. doi: 10.1016/j.femsyr.2005.02.005. 10.1016/j.femsyr.2005.02.005 15851104 Omura F. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol. 2008;78:503–513. doi: 10.1007/s00253-007-1333-x. 10.1007/s00253-007-1333-x 18193418 Falco SC, Dumas KS, Livak KJ. Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res. 1985;13:4011–4027. doi: 10.1093/nar/13.11.4011. 10.1093/nar/13.11.4011 PMC341293 2989783 Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592:63–77. doi: 10.1016/S0167-4889(02)00265-3. 10.1016/S0167-4889(02)00265-3 12191769 Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng. 2012. In press. 22543927 Dickinson JR, Salgado LE, Hewlins MJ. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem. 2003;278:8028–8034. doi: 10.1074/jbc.M211914200. 10.1074/jbc.M211914200 12499363 Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–644. doi: 10.1016/j.cell.2009.08.005. 10.1016/j.cell.2009.08.005 PMC4099469 19703392 Mitoprot. Prediction of mitochondrial targeting sequences. http://ihg.gsf.de/ihg/mitoprot.html. Wiedemann B, Boles E. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043–2050. doi: 10.1128/AEM.02395-07. 10.1128/AEM.02395-07 PMC2292587 18263741 Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:2304–2311. doi: 10.1128/AEM.02522-08. 10.1128/AEM.02522-08 PMC2675233 19218403 Hohmann S, Cederberg H. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem. 1990;188:615–621. doi: 10.1111/j.1432-1033.1990.tb15442.x. 10.1111/j.1432-1033.1990.tb15442.x 2185016 Hohmann S. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet. 1991;20:373–378. doi: 10.1007/BF00317064. 10.1007/BF00317064 1807827 Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol. 1991;173:7963–7969. PMC212591 1744053 Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem. 1997;272:26871–26878. doi: 10.1074/jbc.272.43.26871. 10.1074/jbc.272.43.26871 9341119 Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69:4534–4541. doi: 10.1128/AEM.69.8.4534-4541.2003. 10.1128/AEM.69.8.4534-4541.2003 PMC169140 12902239 Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71:3276–3284. doi: 10.1128/AEM.71.6.3276-3284.2005. 10.1128/AEM.71.6.3276-3284.2005 PMC1151862 15933030 de la Plaza M, Fernandez De Palencia P, Pelaez C, Requena T. Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett. 2004;238:367–374. 15358422 Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905–2915. doi: 10.1128/AEM.03034-10. 10.1128/AEM.03034-10 PMC3126405 21398484 Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B. Kunji ER. Martinou JC: Identification and functional expression of the mitochondrial pyruvate carrier. Science; 2012. 22628554 Park HS, Xing R, Whitman WB. Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. Biochim Biophys Acta. 1995;1245:366–370. doi: 10.1016/0304-4165(95)00103-4. 10.1016/0304-4165(95)00103-4 8541313 Gjermansen C, Nilsson-Tillgren T, Petersen JG, Kielland-Brandt MC, Sigsgaard P, Holmberg S. Towards diacetyl-less brewers' yeast. influence of ilv2 and ilv5 mutations. J Basic Microbiol. 1988;28:175–183. doi: 10.1002/jobm.3620280304. 10.1002/jobm.3620280304 3057172 Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry. 1999;38:5222–5231. doi: 10.1021/bi983013m. 10.1021/bi983013m 10213630 Zelenaya-Troitskaya O, Perlman PS, Butow RA. An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J. 1995;14:3268–3276. PMC394389 7621838 Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem. 2011;286:41205–41216. doi: 10.1074/jbc.M111.296152. 10.1074/jbc.M111.296152 PMC3308834 21987576 Schilke B, Voisine C, Beinert H, Craig E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1999;96:10206–10211. doi: 10.1073/pnas.96.18.10206. 10.1073/pnas.96.18.10206 PMC17867 10468587 Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009;460:831–838. doi: 10.1038/nature08301. 10.1038/nature08301 19675643 Kispal G, Csere P, Prohl C, Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999;18:3981–3989. doi: 10.1093/emboj/18.14.3981. 10.1093/emboj/18.14.3981 PMC1171474 10406803 Mobyle portal - Institut Pasteur. http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::cai. Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res. 2007;7:604–620. doi: 10.1111/j.1567-1364.2007.00220.x. 10.1111/j.1567-1364.2007.00220.x 17419774 Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85:651–657. doi: 10.1007/s00253-009-2085-6. 10.1007/s00253-009-2085-6 PMC2802489 19609521 Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast. 1996;12:247–257. doi: 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I. 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I 8904337 Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast. 2001;18:19–32. doi: 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5. 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5 11124698 Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13:345–352. doi: 10.1016/j.ymben.2011.02.004. 10.1016/j.ymben.2011.02.004 21515217 Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519. 10.1093/nar/24.13.2519 PMC145975 8692690 Carter Z, Delneri D. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast. 2010;27:765–775. doi: 10.1002/yea.1774. 10.1002/yea.1774 20641014 Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol. 2003;69:4144–4150. doi: 10.1128/AEM.69.7.4144-4150.2003. 10.1128/AEM.69.7.4144-4150.2003 PMC165137 12839792 Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 2006;40:73–78. doi: 10.2144/000112040. 10.2144/000112040 16454043 Zimmermann FK. Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisiae. Mutation Research/Environmental Mutagenesis and Related Subjects. 1975;31:71–86. doi: 10.1016/0165-1161(75)90069-2. 10.1016/0165-1161(75)90069-2 235086 Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988;16:6127–6145. doi: 10.1093/nar/16.13.6127. 10.1093/nar/16.13.6127 PMC336852 3041370 Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. 12073338 Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1–4. 17401330 Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999;464:123–128. doi: 10.1016/S0014-5793(99)01698-1. 10.1016/S0014-5793(99)01698-1 10618490 Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148:2783–2788. 12213924 Sambrook J, Russell DW. Molecular cloning. A laboratory manual. New York: Cold Spring Harbor; 2001. Boles E, Zimmermann FK. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr Genet. 1993;23:187–191. doi: 10.1007/BF00351494. 10.1007/BF00351494 8435847 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. 10.1016/0003-2697(76)90527-3 942051 Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16:857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B. 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B 10861908 Krampitz LO. Synthesis of alpha-acetolactic acid. Arch Biochem. 1948;17:81–85. 18910679 22266804 2012 05 09 2013 11 21 1521-3765 18 8 2012 Feb 20 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. 2342 2348 2342-8 10.1002/chem.201103479 Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Bode Helge B HB Institut für Molekulare Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60436 Frankfurt am Main, Germany. h.bode@bio.uni-frankfurt.de Reimer Daniela D Fuchs Sebastian W SW Kirchner Ferdinand F Dauth Christina C Kegler Carsten C Lorenzen Wolfram W Brachmann Alexander O AO Grün Peter P eng Journal Article Research Support, Non-U.S. Gov't 2012 01 20 Germany Chemistry 9513783 0947-6539 0 Biological Products 0 Peptides 0 Peptides, Cyclic IM Biological Products chemistry Isotope Labeling methods Magnetic Resonance Spectroscopy Mass Spectrometry methods Peptides chemistry Peptides, Cyclic chemistry Stereoisomerism 2011 11 4 2012 1 24 6 0 2012 1 24 6 0 2012 5 10 6 0 ppublish 22266804 10.1002/chem.201103479 19617362 2009 09 17 2021 10 20 1098-5530 191 18 2009 Sep Journal of bacteriology J Bacteriol Isoprenoids are essential for fruiting body formation in Myxococcus xanthus. 5849 5853 5849-53 10.1128/JB.00539-09 It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development. Lorenzen Wolfram W Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Biozentrum/Campus Riedberg, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. Ring Michael W MW Schwär Gertrud G Bode Helge B HB eng Journal Article Research Support, Non-U.S. Gov't 2009 07 17 United States J Bacteriol 2985120R 0021-9193 0 Acyl Coenzyme A 0 Bacterial Proteins 0 Culture Media 0 Terpenes 1553-55-5 3-hydroxy-3-methylglutaryl-coenzyme A 6244-91-3 isovaleryl-coenzyme A 661X270Z3L mevalonolactone S5UOB36OCZ Mevalonic Acid IM Acyl Coenzyme A genetics metabolism Bacterial Proteins genetics metabolism Culture Media Gene Expression Regulation, Bacterial Mevalonic Acid analogs & derivatives metabolism Mutation Myxococcus xanthus genetics growth & development metabolism Terpenes metabolism 2009 7 21 9 0 2009 7 21 9 0 2009 9 18 6 0 2010 3 1 ppublish 19617362 PMC2737962 10.1128/JB.00539-09 JB.00539-09 Berleman, J. E., and J. R. Kirby. 2007. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions. J. Bacteriol. 1895675-5682. PMC1951827 17513469 Bode, H. B., and R. Müller. 2006. Analysis of myxobacterial secondary metabolism goes molecular. J. Ind. Microbiol. Biotechnol. 33577-588. 16491362 Bode, H. B., and R. Müller. 2007. Secondary metabolism in myxobacteria, p. 259-282. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC. Bode, H. B., M. W. Ring, G. Schwär, M. O. Altmeyer, C. Kegler, I. R. Jose, M. Singer, and R. Müller. 2009. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. Chembiochem 10128-140. 18846531 Bode, H. B., M. W. Ring, G. Schwär, R. M. Kroppenstedt, D. Kaiser, and R. Müller. 2006. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in the biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J. Bacteriol. 1886524-6528. PMC1595499 16952943 Bode, H. B., S. C. Wenzel, H. Irschik, G. Höfle, and R. Müller. 2004. Unusual biosynthesis of leupyrrins in the myxobacterium Sorangium cellulosum. Angew. Chem. Int. Ed. 434163-4167. 15307077 Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. Müller. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47471-481. 12519197 Bretscher, A. P., and D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133763-768. PMC222085 415048 Curtis, P. D., and L. J. Shimkets. 2007. Metabolic pathways relevant to predation, signaling, and development, p. 241-258. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC. Dickschat, J. S., H. B. Bode, T. Mahmud, R. Müller, and S. Schulz. 2005. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 705174-5182. 15960521 Dickschat, J. S., H. B. Bode, S. C. Wenzel, R. Müller, and S. Schulz. 2005. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 62023-2033. 16208730 Dickschat, J. S., T. Nawrath, V. Thiel, B. Kunze, R. Müller, and S. Schulz. 2007. Biosynthesis of the off-flavor 2-methylisoborneol by the myxobacterium Nannocystis exedens. Angew. Chem. Int. Ed. 468287-8290. 17899580 Dickschat, J. S., S. C. Wenzel, H. B. Bode, R. Müller, and S. Schulz. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chembiochem 5778-787. 15174160 Gershenzon, J., and N. Dudareva. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3408-414. 17576428 Goldman, B. S., W. C. Nierman, D. Kaiser, S. C. Slater, A. S. Durkin, J. Eisen, C. M. Ronning, W. B. Barbazuk, M. Blanchard, C. Field, C. Halling, G. Hinkle, O. Iartchuk, H. S. Kim, C. Mackenzie, R. Madupu, N. Miller, A. Shvartsbeyn, S. A. Sullivan, M. Vaudin, R. Wiegand, and H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 10315200-15205. PMC1622800 17015832 Hartzell, P., W. Shi, and P. Youderian. 2007. Gliding motility in Myxococcus xanthus, p. 103-122. In D. Whitworth (ed.), Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC. Hull, W. E., A. Berkessel, and W. Plaga. 1998. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone. Proc. Natl. Acad. Sci. USA 9511268-11273. PMC21631 9736725 Jansen, R., A. Nowak, B. Kunze, H. Reichenbach, and G. Höfle. 1995. Four new carotenoids from Polyangium fumosum (Myxobacteria): 3,3′,4,4′-tetradehydro-1,1′,2,2′-tetrahydro-1,1′-dihydroxy-y,y-carotene (di-O-demethylspirilloxanthin), its beta-glucoside fatty acid esters. Liebigs Ann. Recl. 1995:873-876. Kleinig, H., and H. Reichenbach. 1969. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). I. The minor carotenoids. Arch. Mikrobiol. 68210-217. 4315734 Kleinig, H., and H. Reichenbach. 1970. A new type of carotenoid pigment isolated from myxobacteria. Naturwissenschaften 5792-93. 4988084 Kleinig, H., H. Reichenbach, and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II. Acylated carotenoid glucosides. Arch. Mikrobiol. 74223-234. 5495385 Mahmud, T., S. C. Wenzel, E. Wan, K. W. Wen, H. B. Bode, N. Gaitatzis, and R. Müller. 2005. A novel biosynthetic pathway to isovaleryl-CoA in myxobacteria: the involvement of the mevalonate pathway. Chembiochem 6322-330. 15619721 Mahmud, T., H. B. Bode, B. Silakowski, R. M. Kroppenstedt, M. Xu, S. Nordhoff, G. Höfle, and R. Müller. 2002. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J. Biol. Chem. 27732768-32774. 12084727 Michal, G. 1999. Biochemical pathways. Spektrum Akademischer Verlag, Heidelberg, Germany. Plaga, W., I. Stamm, and H. U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 9511263-11267. PMC21630 9736724 Ring, M. W., G. Schwär, V. Thiel, J. S. Dickschat, R. M. Kroppenstedt, S. Schulz, and H. B. Bode. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J. Biol. Chem. 28136691-36700. 16990257 Schneiker, S., O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, S. Beyer, E. Bode, H. B. Bode, C. J. Bolten, J. V. Choudhuri, S. Doss, Y. A. Elnakady, B. Frank, L. Gaigalat, A. Goesmann, C. Groeger, F. Gross, L. Jelsbak, L. Jelsbak, J. Kalinowski, C. Kegler, T. Knauber, S. Konietzny, M. Kopp, L. Krause, D. Krug, B. Linke, T. Mahmud, R. Martinez-Arias, A. C. McHardy, M. Merai, F. Meyer, S. Mormann, J. Munoz-Dorado, J. Perez, S. Pradella, S. Rachid, G. Raddatz, F. Rosenau, C. Ruckert, F. Sasse, M. Scharfe, S. C. Schuster, G. Suen, A. Treuner-Lange, G. J. Velicer, F. J. Vorholter, K. J. Weissman, R. D. Welch, S. C. Wenzel, D. E. Whitworth, S. Wilhelm, C. Wittmann, H. Blöcker, A. Pühler, and R. Müller. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 251281-1289. 17965706 Shimkets, L., M. Dworkin, and H. Reichenbach. 2006. The myxobacteria, p. 31-115. In M. Dworkin (ed.), The prokaryotes, vol. 7. Springer, Berlin, Germany. Shimkets, L., and T. W. Seale. 1975. Fruiting-body formation and myxospore differentiation and germination in Mxyococcus xanthus viewed by scanning electron microscopy. J. Bacteriol. 121711-720. PMC245987 803486 Toal, D. R., S. W. Clifton, B. A. Roe, and J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the E1 alpha and E1 beta subunits of a branched-chain keto acid dehydrogenase. Mol. Microbiol. 16177-189. 7565081 19113894 2009 02 19 2013 11 21 1520-6025 72 1 2009 Jan Journal of natural products J Nat Prod Myxotyrosides A and B, Unusual rhamnosides from Myxococcus sp. 82 86 82-6 10.1021/np8005875 Myxobacteria are gliding bacteria of the delta-subdivision of the Proteobacteria and known for their unique biosynthetic capabilities. Two examples of a new class of metabolites, myxotyrosides A (1) and B (2), were isolated from a Myxococcus sp. The myxotyrosides have a tyrosine-derived core structure glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-methyl-2-hexadecenoic and (Z)-2-hexadecenoic acid. The fatty acid profile of the investigated Myxococcus sp. (strain 131) is that of a typical myxobacterium with a high similarity to those described for M. fulvus and M. xanthus, with significant concentrations of neither 15-methyl-2-hexadecenoic acid nor 2-hexadecenoic acid being detected. Ohlendorf Birgit B Institute of Pharmaceutical Biology, UniVersity of Bonn, Nussallee 6, D-53115 Bonn, Germany. Lorenzen Wolfram W Kehraus Stefan S Krick Anja A Bode Helge B HB König Gabriele M GM eng Journal Article United States J Nat Prod 7906882 0163-3864 0 Antineoplastic Agents 0 Fatty Acids 0 Glycolipids 0 myxotyroside A 0 myxotyroside B QN34XC755A Rhamnose IM Animals Antineoplastic Agents chemistry isolation & purification pharmacology Bacillus megaterium drug effects Chlorella drug effects Drug Screening Assays, Antitumor Escherichia coli drug effects Eurotium drug effects Fatty Acids genetics Gas Chromatography-Mass Spectrometry Glycolipids chemistry isolation & purification pharmacology Microbial Sensitivity Tests Molecular Structure Myxococcus chemistry Plasmodium falciparum drug effects Pseudomonas putida drug effects Quorum Sensing Rhamnose analogs & derivatives chemistry isolation & purification pharmacology 2008 12 31 9 0 2008 12 31 9 0 2009 2 20 9 0 ppublish 19113894 10.1021/np8005875 10.1021/np8005875 trying2...
Publications by Wolfram Lorenzen | LitMetric
Publications by authors named "Wolfram Lorenzen"
The UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra, as well as NMR and high resolution tandem mass spectrometry spectra were determined for two prominent secondary metabolites from cyanobacteria, namely anabaenopeptin A and anabaenopeptin B. The compounds were extracted from the cyanobacterium CBT929 and purified by flash chromatography and HPLC. Exact amounts of isolated compounds were assessed by quantitative H-NMR with internal calibrant ethyl 4-(dimethylamino)benzoate in DMSO‑ at 298 K with a recycle delay (d1) of 120 s.
View Article and Find Full Text PDF
Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions.
View Article and Find Full Text PDF
Biochim Biophys Acta
March 2016
Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.
View Article and Find Full Text PDF
Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD.
View Article and Find Full Text PDF
J Lipid Res
December 2014
Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M.
View Article and Find Full Text PDF
Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.
View Article and Find Full Text PDF
Biotechnol Biofuels
September 2012
Background : The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S.
View Article and Find Full Text PDF
Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation.
View Article and Find Full Text PDF
J Bacteriol
September 2009
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.
View Article and Find Full Text PDF
Myxobacteria are gliding bacteria of the delta-subdivision of the Proteobacteria and known for their unique biosynthetic capabilities. Two examples of a new class of metabolites, myxotyrosides A (1) and B (2), were isolated from a Myxococcus sp. The myxotyrosides have a tyrosine-derived core structure glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-methyl-2-hexadecenoic and (Z)-2-hexadecenoic acid.
View Article and Find Full Text PDF