Publications by authors named "Wolfgang-Michael Schulz"

We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

View Article and Find Full Text PDF

Using focused ion beam etching techniques, micropillar cavities were fabricated from a high reflective AlAs/AlGaAs distributed Bragg reflector planar cavity containing self-assembled InP quantum dots in (Al(0.20)Ga(0.80))(0.

View Article and Find Full Text PDF

Low density (approximately 10(7) cm(-2)), small sized InGaAs quantum dots were grown on a GaAs substrate by metal-organic vapor-phase epitaxy and a special annealing technique. The structural quantum dot properties and the influence of the annealing technique was investigated by atomic force microscope measurements. High-resolution micro-photoluminescence spectra reveal narrow photoluminescence lines, with linewidths down to 11 microeV and fine structure splittings of 25 microeV.

View Article and Find Full Text PDF