Publications by authors named "Wolfgang Taute"

Multi-resonance microwave sensors have recently been introduced for moisture monitoring of pharmaceutical particulates up to > 20% residual moisture. The extended measuring range compared to previous systems as well as the microwave moisture values independent of other physical attributes make them promising process analytical technology (PAT) tools for various pharmaceutical production processes. However, so far, research focused on measurements on raw materials or drug-free model granulates and has neither evaluated the applicability for materials with crystal water containing excipients nor for active ingredients.

View Article and Find Full Text PDF

Recently, microwave resonance technology (MRT) sensor systems operating at four resonances instead of a single resonance frequency were established as a process analytical technology (PAT) tool for moisture monitoring. The additional resonance frequencies extend the technologies' possible application range in pharmaceutical production processes remarkably towards higher moisture contents. In the present study, a novel multi-resonance MRT sensor was installed in a bottom-tangential-spray fluidized bed granulator in order to provide a proof-of-concept of the recently introduced technology in industrial pilot-scale equipment.

View Article and Find Full Text PDF

The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available.

View Article and Find Full Text PDF

Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g.

View Article and Find Full Text PDF

Microwave sensor systems using resonance technology at a single resonance in the range of 2-3 GHz have been shown to be a rapid and reliable tool for moisture determination in solid materials including pharmaceutical granules. So far, their application is limited to lower moisture ranges or limitations above certain moisture contents had to be accepted. Aim of the present study was to develop a novel multi-resonance sensor system in order to expand the measurement range.

View Article and Find Full Text PDF