Publications by authors named "Wolfgang Runde"

Ionic liquids (ILs) are a unique class of solvents with potential applications in advanced separation technologies relevant to the nuclear industry. ILs are salts with low melting points and a wide range of tunable physical properties, such as viscosity, hydrophobiciy, conductivity, and liquidus range. ILs have negligible vapor pressure, are often non-flammable, and can have high thermal stability and a wide electrochemical window, making them attractive for use in separations processes relevant to the nuclear industry.

View Article and Find Full Text PDF

The behavior of neptunium in the ionic liquid betaine bistriflimide, [Hbet][Tf2N], has been studied spectroscopically at room temperature and 60 °C for the first time. An unprecedented complex redox chemistry is observed, with up to three oxidation states (iv, v and vi) and up to six Np species existing simultaneously. Both redox reactions and coordination of betaine are observed for Np(iv), (v) and (vi).

View Article and Find Full Text PDF

A fundamental understanding of the behavior of actinides in ionic liquids is required to develop advanced separation technologies. Spectroscopic measurements indicate a change in the coordination of uranyl in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) as water is added to the system. Molecular dynamics simulations of dilute uranyl (UO2(2+)) and plutonyl (PuO2(2+)) ) solutions in [EMIM][Tf2N]/water mixtures have been performed in order to examine the molecular-level coordination and dynamics of the actinyl cation (AnO2(2+)) ); An = U, Pu) as the amount of water in the system changes.

View Article and Find Full Text PDF

Intra- and intermolecular force field parameters for the interaction of actinyl ions (AnO2(n+), where, An = U, Np, Pu, Am and n = 1, 2) with water have been developed using quantum mechanical calculations. Water was modeled with the extended simple point charge potential (SPC/E). The resulting force field consists of a simple form in which intermolecular interactions are modeled with pairwise Lennard-Jones functions plus partial charge terms.

View Article and Find Full Text PDF

The radiolytic production of molecular hydrogen in the ionic liquids N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide ([N1114][Tf2N]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been examined with γ-rays, 2-10 MeV protons, and 5-20 MeV helium ions to determine the functional dependence of the yield on particle track structure. Molecular hydrogen is the dominant gaseous radiolysis product from these ionic liquids, and the yields with γ-rays are 0.73 and 0.

View Article and Find Full Text PDF
Article Synopsis
  • (pyrazol-1-yl)acetic acid (L) can create unique complexes with lanthanide metals, which has yet to be fully studied in its coordination chemistry.
  • Four lanthanide complexes were synthesized, and their structures revealed one-dimensional chains linked by different coordination types of carboxylate groups.
  • The study found distinct differences between the solid-state and solution-state spectra, confirmed by NMR signals indicating varied coordination environments.
View Article and Find Full Text PDF

The carboxyl-functionalized phosphonium ionic liquid (IL), [HCTMP][Tf(2)N], enabled the directed nucleation of monomeric or dimeric uranyl(vi) compounds. This new IL is the first carboxyl-functionalized IL which is liquid at room temperature and exhibits a wider electrochemical window and lower melting point than its ammonium analogue.

View Article and Find Full Text PDF

Task-specific ionic liquids (TSILs) present an opportunity to replace traditional organic solvents for metal dissolution or separation. To date, a thorough investigation of the physical properties of biphasic TSIL-H(2)O systems and the effects of metal loading is lacking. In this work, the change in the liquid-liquid equilibrium of [HBet][Tf(2)N]-H(2)O upon the addition of Nd(III) is investigated by cloud-point measurements.

View Article and Find Full Text PDF

Despite the wide range of applications of α-hydroxyisobutyric acid (HIBA) in biochemical processes, pharmaceutical formulations, and group and elemental separations of lanthanides and actinides, the structures and geometries of lanthanide-HIBA complexes are still not well understood. We reacted HIBA with lanthanides in aqueous solution at pH = 5 and synthesized 14 lanthanide-HIBA complexes of the formula [Ln(HIBA)(2)(H(2)O)(2)](NO(3))·H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14)), isolating single crystals (1-7, 10, and 11) and powders (8, 9, and 12-14). Both single-crystal and powder X-ray diffraction studies reveal a two-dimensional extended structure across the entire lanthanide series.

View Article and Find Full Text PDF

Room-temperature ionic liquids (RTILs) are regarded as green solvents due to their low volatility, low flammability, and thermal stability. RTILs exhibit wide electrochemical windows, making them prime candidates as media for electrochemically driven reactions such as electro-catalysis and electro-plating for separations applications. Therefore, understanding the factors determining edges of the electrochemical window, the electrochemical stability of the RTILs, and the degradation products is crucial to improve the efficiency and applicability of these systems.

View Article and Find Full Text PDF

Single crystal structures of lanthanide carbonate and hydroxy-carbonate compounds have been previously reported in the literature, with the majority of these compounds being extended one- to three-dimensional compounds. Very few lanthanide compounds have been isolated that contain molecular moieties, and none have been reported for either erbium or dysprosium. Single crystals of the tetra-carbonate complexes, [C(NH(2))(3)](5)[Er(CO(3))(4)].

View Article and Find Full Text PDF

The trivalent lanthanide bis-hydroxychloride compounds, Ln(OH)(2)Cl, (Ln = Nd through Lu, with the exception of Pm and Sm) have been prepared by hydrothermal synthesis starting with LnCl(3).nH(2)O. These compounds were synthesized at temperatures not exceeding the melting point of the Teflon liners in the Parr autoclaves ( approximately 220 degrees C).

View Article and Find Full Text PDF

Both binary and ternary solid complexes of Pu(III) and Pu(IV) oxalates have been previously reported in the literature. However, uncertainties regarding the coordination chemistry and the extent of hydration of some compounds remain mainly because of the absence of any crystallographic characterization. Single crystals of hydrated oxalates of Pu(III), Pu(2)(C(2)O(4))(3)(H(2)O)(6).

View Article and Find Full Text PDF

A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs(+)-selective electrode was developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs(+) in terms of sensitivity, selectivity, and dynamic response.

View Article and Find Full Text PDF

In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies.

View Article and Find Full Text PDF

Single crystals of Na(8)Pu(2)(O(2))(2)(CO(3))(6) x 12H(2)O, exhibiting bridging mu(2),eta(2)-O(2) ligands in unprecedented Pu(IV) dimeric units, were obtained at ambient temperature from an aqueous Pu(IV) peroxide carbonate solution.

View Article and Find Full Text PDF

Two americium(III) iodates, beta-Am(IO3)3 (I) and alpha-Am(IO3)3 (II), have been prepared from the aqueous reactions of Am(III) with KIO(4) at 180 degrees C and have been characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy. The alpha-form is consistent with the known structure type I of anhydrous lanthanide iodates. It consists of a three-dimensional network of pyramidal iodate groups bridging [AmO8] polyhedra where each of the americium ions are coordinated to eight iodate ligands.

View Article and Find Full Text PDF

The hydrothermal reaction of a (239)Pu(IV) stock solution in the presence of iodic acid and 1 M KOH produces reddish-brown single crystals of (PuO(2))(2)(IO(3))(OH)(3). The structure consists of two-dimensional layers forming in the ac plane and is the first single-crystal structure of plutonium(VI) connected through hydroxide anions. The additional linkage of plutonium centers is completed through iodate ligands.

View Article and Find Full Text PDF

The title compound was obtained by reacting UO2 powder in 2 M K2CO3 with hydrogen peroxide. The compound contains individual [U(CO3)2O2(O2)]4- ions, which are linked via an extended network of K atoms and hydrogen bonding. The U atom is coordinated to two trans-axial O atoms and six O atoms in the equatorial plane, forming distorted hexagonal bipyramids.

View Article and Find Full Text PDF

Pu L(3) X-ray absorption fine structure spectra from 24 samples of PuO(2+x) (and two related Pu-substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH(-) (and possibly H(2)O and H(+)) into the PuO(2) lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 A, consistent with the multiply bound "oxo"-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO(2)(+) moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H(2)O at ambient conditions. The most accurate description of PuO(2) is therefore actually PuO(2+x-y)(OH)(2)(y).

View Article and Find Full Text PDF

Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

View Article and Find Full Text PDF

Pu L(3) X-ray near edge absorption spectra for Pu(0-VII) are reported for more than 60 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconolite, perovskite, and borosilicate glass. This large database extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types, a number of novel and unexpected behaviors are observed, such as effects resulting from the medium and disorder that can be as large as those from valence.

View Article and Find Full Text PDF

Two neptunyl(VI) iodates, NpO(2)(IO(3))(2)(H(2)O) (1) and NpO(2)(IO(3))(2).H(2)O (2), have been prepared from the aqueous reactions of Np(V) in HCl with KIO(4) or H(5)IO(6) at 180 degrees C and have been characterized by single crystal X-ray diffraction and Raman spectroscopy. Both compounds consist of two-dimensional arrangements of pentagonal bipyramidal [NpO(7)] polyhedra with axial neptunyl, NpO(2)(2+), dioxocations.

View Article and Find Full Text PDF

Single crystals of K3Am3(IO3)12 x HIO3 were synthesized under hydrothermal conditions (180 degrees C) representing the first structurally characterized actinide(III) iodate.

View Article and Find Full Text PDF