Publications by authors named "Wolfgang Rheinheimer"

Article Synopsis
  • Hydroxyapatite (HAp) coatings are used on bone implants to enhance biocompatibility and promote bone growth, but they can still lead to infections.
  • This study explored the use of high-velocity suspension flame spraying (HVSFS) to create thin HAp coatings and tested the effects of varying gas parameters and copper (Cu) additions on their properties and effectiveness.
  • Results indicated that using medium gas parameters and adding 1 wt.% Cu provided a good balance between antibacterial properties and biocompatibility, effectively reducing bacterial counts while limiting cytotoxic effects.
View Article and Find Full Text PDF

Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Prosthesis loosening is a common implant failure caused by insufficient bonding between the implant and surrounding bone, often compounded by bacterial infection and biofilm.
  • Using bioconductive and biodegradable calcium phosphate (CaP) coatings with incorporated antibacterial agents can enhance both bone integration and combat bacterial growth.
  • This study focuses on creating Cu-doped CaP coatings with better porosity and antibacterial properties, showing good biocompatibility and effective antimicrobial action against various bacterial strains.
View Article and Find Full Text PDF

Sintering is an important processing step in both ceramics and metals processing. The microstructure resulting from this process determines many materials properties of interest. Hence the accurate prediction of the microstructure, depending on processing and materials parameters, is of great importance.

View Article and Find Full Text PDF

For millennia, ceramics have been densified sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns relying on thermal radiation and insulation. Here, we realize ultrarapid heating with intense blue and UV-light.

View Article and Find Full Text PDF
Article Synopsis
  • Functional and structural ceramics are crucial in high-tech applications but are limited by their brittleness, making them prone to short cracks.
  • Traditional toughening methods, which rely on mobile dislocations, have been ineffective in ceramics due to their strong atomic bonds; however, new research demonstrates potential for engineering dislocation structures to enhance toughness.
  • By utilizing modern microscopy and simulations, researchers found that adjusting dislocation density can significantly improve crack resistance in ceramics, suggesting that innovative synthesis strategies could enhance their mechanical performance.
View Article and Find Full Text PDF

One-dimensional ZnO nanostructures have shown great potential in electronics, optoelectronics and electromechanical devices owing to their unique physical and chemical properties. Most of these nanostructures were grown by equilibrium processes where the defects density is controlled by thermodynamic equilibrium. In this work, flash sintering, a non-equilibrium field-assisted processing method, has been used to synthesize ZnO nanostructures.

View Article and Find Full Text PDF