We tested the hypothesis that differential sensitivity to ethanol of synaptic GABA(A) somatic and dendritic inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal neurons could be due to differences in the extent of GABA(B) receptor activity at GABAergic synapses in these two hippocampal subfields. Our present results show that dendritic (distally evoked) GABA IPSCs contain a larger GABA(B) IPSC component of the total GABA IPSC than the somatic (proximally evoked) subfield. The inhibition of GABA(B) receptors by pretreatment of hippocampal slices with CGP-52432 [3[[(3,4-dichlorophenyl)methyl]amino]propyl](diethoxymethyl) phosphinic acid], a selective GABA(B) receptor antagonist, changes the basal ethanol-insensitive, distally evoked GABA(A) IPSCs to become more sensitive to ethanol.
View Article and Find Full Text PDFIn the 1st part of this study, monosynaptic excitatory postsynaptic potentials (EPSPs) in layer V of the rat prefrontal cortex (PFC) were evoked by electrical stimulation of layer I. Recordings with intracellular sharp, microelectrodes showed a concentration-dependent inhibition of the EPSP by adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S). Pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), when given alone depressed the EPSP and in addition antagonized the effect of ADP-beta-S.
View Article and Find Full Text PDFIn the first part of this study, monosynaptic excitatory postsynaptic potentials (EPSPs) in layer V of the rat prefrontal cortex were evoked by electrical stimulation of layer I. Recordings by intracellular sharp microelectrodes showed that EPSPs were concentration-dependently facilitated by the P2 receptor antagonistic ATP analogue 2-methylthio ATP (2-MeSATP), while ATP itself depressed the synaptic potentials. The inhibitory effect of ATP turned into facilitation in the presence of the adenosine A(1) receptor antagonist DPCPX.
View Article and Find Full Text PDF